Epidemic Threshold in Continuous-Time Evolving Networks

被引:56
|
作者
Valdano, Eugenio [1 ,4 ]
Fiorentin, Michele Re [2 ]
Poletto, Chiara [1 ]
Colizza, Vittoria [1 ,3 ]
机构
[1] Sorbonne Univ, IPLESP, INSERM, F-75012 Paris, France
[2] Ist Italiano Tecnol, Ctr Sustainable Future Technol, CSFT PoliTo, Corso Trento 21, I-10129 Turin, Italy
[3] ISI Fdn, I-10126 Turin, Italy
[4] Univ Rovira & Virgili, Dept Engn Informat & Matemat, E-43007 Tarragona, Spain
关键词
DYNAMICS; DISEASE; SPREAD;
D O I
10.1103/PhysRevLett.120.068302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Current understanding of the critical outbreak condition on temporal networks relies on approximations (time scale separation, discretization) that may bias the results. We propose a theoretical framework to compute the epidemic threshold in continuous time through the infection propagator approach. We introduce the weak commutation condition allowing the interpretation of annealed networks, activity-driven networks, and time scale separation into one formalism. Our work provides a coherent connection between discrete and continuous time representations applicable to realistic scenarios.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Closed-form continuous-time neural networks
    Hasani, Ramin
    Lechner, Mathias
    Amini, Alexander
    Liebenwein, Lucas
    Ray, Aaron
    Tschaikowski, Max
    Teschl, Gerald
    Rus, Daniela
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (11) : 992 - +
  • [32] On the Continuous-time and Discrete-Time Versions of an Alternative Epidemic Model of the SIR Class
    Jorge A. Costa
    Amanda C. Martinez
    José C. Geromel
    [J]. Journal of Control, Automation and Electrical Systems, 2022, 33 : 38 - 48
  • [33] Frequent Pattern Mining in Continuous-Time Temporal Networks
    Jazayeri, Ali
    Yang, Christopher C.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (01) : 305 - 321
  • [34] On optimization of continuous-time Markov networks in distributed computing
    Bui, A
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1999, 15 (04) : 299 - 314
  • [35] ON THE DYNAMICS OF SMALL CONTINUOUS-TIME RECURRENT NEURAL NETWORKS
    BEER, RD
    [J]. ADAPTIVE BEHAVIOR, 1995, 3 (04) : 469 - 509
  • [36] Noisy recurrent neural networks: The continuous-time case
    Das, S
    Olurotimi, O
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (05): : 913 - 936
  • [37] A learning result for continuous-time recurrent neural networks
    Sontag, ED
    [J]. SYSTEMS & CONTROL LETTERS, 1998, 34 (03) : 151 - 158
  • [38] Analysis of continuous-time Markovian ?-SIS epidemics on networks
    Achterberg, Massimo A.
    Prasse, Bastian
    Van Mieghem, Piet
    [J]. PHYSICAL REVIEW E, 2022, 105 (05)
  • [39] A CONTINUOUS-TIME STOCHASTIC BLOCK MODEL FOR BASKETBALL NETWORKS
    Xin, Lu
    Zhu, Mu
    Chipman, Hugh
    [J]. ANNALS OF APPLIED STATISTICS, 2017, 11 (02): : 553 - 597
  • [40] Complete controllability of continuous-time recurrent neural networks
    Sontag, E
    Sussmann, H
    [J]. SYSTEMS & CONTROL LETTERS, 1997, 30 (04) : 177 - 183