Analog Spiking Neuron in 28 nm CMOS

被引:5
|
作者
Besrour, Marwan [1 ,2 ]
Zitoun, Sarra [1 ,2 ]
Lavoie, Jacob [1 ,2 ]
Omrani, Takwa [1 ,2 ]
Koua, Konin [1 ,2 ]
Benhouria, Maher [1 ,2 ]
Boukadoum, Mounir [3 ]
Fontaine, Rejean [1 ,2 ]
机构
[1] Univ Sherbrooke, Dept Elect Engn & Comp Engn, Sherbrooke, PQ, Canada
[2] Univ Sherbrooke, 3IT Interdisciplinary Inst Technol Innovat, Sherbrooke, PQ, Canada
[3] Univ Quebec Montreal, Dept Infonnat, Montreal, PQ, Canada
关键词
Neuromorphic; analog CMOS; leaky-integrate-and-fire (LIF) model; machine learning; spiking neural networks (SNN); CIRCUIT; MODEL;
D O I
10.1109/NEWCAS52662.2022.9842088
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional computer clusters are facing a significant limitation as a result of the big data revolution. We need efficient edge devices to bring the power of machine learning algorithms from power-hungry room servers to mobile consumer platforms. Neuromorphic engineering is a promising avenue for developing the next generation of edge devices that combine high computing capabilities with low power consumption in a small form factor. This paper shows the proof of concept of an analog/mixed-signal CMOS neuromorphic system on a chip (NeuroSoC) by presenting a low-power design of a leaky integrate-and-fire (LIF) neuron. The design uses eight transistors and two capacitors for low complexity and potential to lead to very dense systems. The proposed model consumes 1.2 fJ/spike and occupies an active area of 6.73 mu m by 5.09 mu m when implemented in 28 nm CMOS. The maximum spiking frequency is 343 kHz.
引用
收藏
页码:148 / 152
页数:5
相关论文
共 50 条
  • [1] Implementation of a Spiking Neuron in CMOS
    Burman, Iman
    Hore, Archita
    Chakraborty, Ayan
    Bandyopadhyay, Sharba
    Chakrabarti, Saswat
    [J]. 2021 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2021, : 581 - 586
  • [2] Implementation of a tunable spiking neuron for STDP with memristors in FDSOI 28nm
    Camunas-Mesa, Luis A.
    Linares-Barranco, Bernabe
    Serrano-Gotarredona, Teresa
    [J]. 2020 2ND IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2020), 2020, : 94 - 98
  • [3] Analog Two-Variable Spiking Neuron in 16 nm FinFET for Neuromorphic Systems
    Stevenazzi, Lorenzo
    Baschirotto, Andrea
    De Matteis, Marcello
    [J]. 2024 19TH CONFERENCE ON PH.D RESEARCH IN MICROELECTRONICS AND ELECTRONICS, PRIME 2024, 2024,
  • [4] Thin film BIMOS transistor for low-power spiking neuron design in 28nm FD-SOI CMOS technology
    Galy, Philippe
    Bedecarrats, Thomas
    Fenouillet-Beranger, Claire
    Cristoloveanu, Sorin
    [J]. 2019 JOINT INTERNATIONAL EUROSOI WORKSHOP AND INTERNATIONAL CONFERENCE ON ULTIMATE INTEGRATION ON SILICON (EUROSOI-ULIS), 2019,
  • [5] Characterization of a 28 nm CMOS Technology for Analog Applications in High Energy Physics
    Traversi, G.
    Gaioni, L.
    Ratti, L.
    Re, V.
    Riceputi, E.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2024, 71 (04) : 932 - 940
  • [6] A Low-Power Analog Cell for Implementing Spiking Neural Networks in 65 nm CMOS
    Venker, John S.
    Vincent, Luke
    Dix, Jeff
    [J]. JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS, 2023, 13 (04)
  • [7] From LIF to AdEx Neuron Models: Accelerated Analog 65 nm CMOS Implementation
    Aamir, Syed Ahmed
    Mueller, Paul
    Kriener, Laura
    Kiene, Gerd
    Schemmel, Johannes
    Meier, Karlheinz
    [J]. 2017 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2017,
  • [8] Silicon Neuron-Analog CMOS VLSI Implementation and Analysis at 180nm
    Srivastava, Sushma
    Rathod, S. S.
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS (ICDCS) 2016, 2016, : 28 - 32
  • [9] Energy-efficient Hybrid CMOS-NEMS LIF Neuron Circuit in 28 nm CMOS Process
    Moradi, Saber
    Bhave, Sunil A.
    Manohar, Rajit
    [J]. 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 3322 - 3326
  • [10] 28 nm CMOS analog front-end channels for future pixel detectors
    Gaioni, L.
    Fratus, M.
    Galliani, A.
    Manghisoni, M.
    Ratti, L.
    Re, V.
    Riceputi, E.
    Traversi, G.
    [J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1045