From LIF to AdEx Neuron Models: Accelerated Analog 65 nm CMOS Implementation

被引:0
|
作者
Aamir, Syed Ahmed [1 ]
Mueller, Paul [1 ]
Kriener, Laura [1 ]
Kiene, Gerd [1 ]
Schemmel, Johannes [1 ]
Meier, Karlheinz [1 ]
机构
[1] Heidelberg Univ, Kirchhoff Inst Phys, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
关键词
Analog integrated circuits; Neuromorphic; Leaky Integrate-and-Fire; 65 nm CMOS; Spiking; Neuron; Adaptation; Exponential; LIF; AdEx;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Here we present analog circuits emulating an Adaptive Exponential I&F (AdEx) neuron model developed for our second generation 65-nm CMOS neuromorphic hardware. Designed for an existing accelerated Leaky Integrate and Fire (LIF) circuit, the modular circuit architecture allows us to switch between LIF and AdEx neuron models and further to multiple-compartments. We describe our circuit implementation and the simulation results for adaptation and exponential sub-circuits. The neuron circuit specifications are compared with a targeted set of computational models. We show how addition of analog AdEx circuits let us qualitatively reproduce spike patterns known from cortical neurons.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] ENERGY EFFICIENT LIF NEURON CIRCUIT USING HYBRID CMOS-NEMS IN 65 NM CMOS TECHNOLOGY
    Saha, Sumit
    Kanakya, Prasad B.
    Goel, Mayank
    Baghini, Maryam Shojaei
    Rao, V. Ramgopal
    [J]. 2022 IEEE 35TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS CONFERENCE (MEMS), 2022, : 17 - 20
  • [2] A Highly Tunable 65-nm CMOS LIF Neuron for a Large Scale Neuromorphic System
    Aamir, Syed Ahmed
    Mueller, Paul
    Hartel, Andreas
    Schemmel, Johannes
    Meier, Karlheinz
    [J]. 2016 46TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2016, : 63 - 66
  • [3] A Highly Tunable 65-nm CMOS LIF Neuron for a Large Scale Neuromorphic System
    Aamir, Syed Ahmed
    Mueller, Paul
    Hartel, Andreas
    Schemmel, Johannes
    Meier, Karlheinz
    [J]. ESSCIRC CONFERENCE 2016, 2016, : 71 - 74
  • [4] Analog Spiking Neuron in 28 nm CMOS
    Besrour, Marwan
    Zitoun, Sarra
    Lavoie, Jacob
    Omrani, Takwa
    Koua, Konin
    Benhouria, Maher
    Boukadoum, Mounir
    Fontaine, Rejean
    [J]. 2022 20TH IEEE INTERREGIONAL NEWCAS CONFERENCE (NEWCAS), 2022, : 148 - 152
  • [5] Silicon Neuron-Analog CMOS VLSI Implementation and Analysis at 180nm
    Srivastava, Sushma
    Rathod, S. S.
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS (ICDCS) 2016, 2016, : 28 - 32
  • [6] 55nm CMOS Analog Circuit Implementation of LIF and STDP Functions for Low-Power SNNs
    Yang, Zhitao
    Han, Zhujiang
    Huang, Yucong
    Ye, Terry Tao
    [J]. 2021 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2021,
  • [7] A Low-Noise Analog Baseband in 65nm CMOS
    Elwan, Hassan
    Tekin, Ahmet
    Pedrotti, Kenneth
    [J]. IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE 2010, 2010,
  • [8] A Fully Analog Circuit Topology for a Conductance-Based Two-Compartmental Neuron Model in 65 nm CMOS Technology
    Naghieh, Pedram
    Sohrabi, Zahra
    Zare, Maryam
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024,
  • [9] Energy-efficient Hybrid CMOS-NEMS LIF Neuron Circuit in 28 nm CMOS Process
    Moradi, Saber
    Bhave, Sunil A.
    Manohar, Rajit
    [J]. 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 3322 - 3326
  • [10] Experimental investigation of stochastic resonance in a 65nm CMOS artificial neuron
    Hedayat, Sara
    Sourikopoulos, Ilias
    Loyez, Christophe
    Danneville, Francois
    Clavier, Laurent
    Hoel, Virginie
    Cappy, Alain
    [J]. 2017 INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2017,