Analog Spiking Neuron in 28 nm CMOS

被引:5
|
作者
Besrour, Marwan [1 ,2 ]
Zitoun, Sarra [1 ,2 ]
Lavoie, Jacob [1 ,2 ]
Omrani, Takwa [1 ,2 ]
Koua, Konin [1 ,2 ]
Benhouria, Maher [1 ,2 ]
Boukadoum, Mounir [3 ]
Fontaine, Rejean [1 ,2 ]
机构
[1] Univ Sherbrooke, Dept Elect Engn & Comp Engn, Sherbrooke, PQ, Canada
[2] Univ Sherbrooke, 3IT Interdisciplinary Inst Technol Innovat, Sherbrooke, PQ, Canada
[3] Univ Quebec Montreal, Dept Infonnat, Montreal, PQ, Canada
关键词
Neuromorphic; analog CMOS; leaky-integrate-and-fire (LIF) model; machine learning; spiking neural networks (SNN); CIRCUIT; MODEL;
D O I
10.1109/NEWCAS52662.2022.9842088
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional computer clusters are facing a significant limitation as a result of the big data revolution. We need efficient edge devices to bring the power of machine learning algorithms from power-hungry room servers to mobile consumer platforms. Neuromorphic engineering is a promising avenue for developing the next generation of edge devices that combine high computing capabilities with low power consumption in a small form factor. This paper shows the proof of concept of an analog/mixed-signal CMOS neuromorphic system on a chip (NeuroSoC) by presenting a low-power design of a leaky integrate-and-fire (LIF) neuron. The design uses eight transistors and two capacitors for low complexity and potential to lead to very dense systems. The proposed model consumes 1.2 fJ/spike and occupies an active area of 6.73 mu m by 5.09 mu m when implemented in 28 nm CMOS. The maximum spiking frequency is 343 kHz.
引用
收藏
页码:148 / 152
页数:5
相关论文
共 50 条
  • [21] Design and Analysis of the MorrisLecar Spiking Neuron in Efficient Analog Implementation
    Takaloo, Hadis
    Ahmadi, Arash
    Ahmadi, Majid
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (01) : 6 - 10
  • [22] A Spiking-Neuron Collective Analog Adder with Scalable Precision
    Woo, Sung Sik
    Sarpeshkar, Rahul
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 1620 - 1623
  • [23] Challenges in Low-Power Analog Circuit Design for sub-28nm CMOS Technologies
    Fahim, Amr
    [J]. PROCEEDINGS OF THE 2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2014, : 123 - 126
  • [24] A CMOS circuit implementation of a spiking neuron with bursting and adaptation on a biological timescale
    Wijekoon, Jayawan H. B.
    Dudek, Piotr
    [J]. 2009 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS 2009), 2009, : 188 - 191
  • [25] A Scalable and PVT Invariant Spiking Neuron Using Asynchronous CMOS Logic
    Loi, Dante
    Granizo, Javier
    Hernandez, Luis
    [J]. 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [26] Spiking Analog VLSI Neuron Assemblies as Constraint Satisfaction Problem Solvers
    Binas, Jonathan
    Indiveri, Giacomo
    Pfeiffer, Michael
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 2094 - 2097
  • [27] Analog Implementation of a Spiking Neuron with Memristive Synapses for Deep Learning Processing
    Ramirez-Morales, Royce R.
    Ponce-Ponce, Victor H.
    Molina-Lozano, Heron
    Sossa-Azuela, Humberto
    Islas-Garcia, Oscar
    Rubio-Espino, Elsa
    [J]. MATHEMATICS, 2024, 12 (13)
  • [28] CMOS-based area-and-power-efficient neuron and synapse circuits for time-domain analog spiking neural networks
    Chen, Xiangyu
    Byambadorj, Zolboo
    Yajima, Takeaki
    Inoue, Hisashi
    H. Inoue, Isao
    Iizuka, Tetsuya
    [J]. APPLIED PHYSICS LETTERS, 2023, 122 (07)
  • [29] Analog IP blocks in 28nm CMOS for the high energy physics community: SLVS transmitter and receiver
    Bandi, F.
    Ballabriga, R.
    Borghello, G.
    Campbell, M.
    Caratelli, A.
    Ceresa, D.
    Hofmann, T.
    Kaplon, J.
    Kloukinas, K.
    Michelis, S.
    Pejasinovic, R.
    Piernas-Diaz, F.
    Piller, M.
    Traversi, G.
    [J]. JOURNAL OF INSTRUMENTATION, 2023, 18 (01):
  • [30] An NMOS Digital LDO With NAND-Based Analog-Assisted Loop in 28-nm CMOS
    Ma, Xiaofei
    Lu, Yan
    Li, Qiang
    Ki, Wing-Hung
    Martins, Rui P.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 4041 - 4052