A Pieri-Chevalley formula in the K-theory of a G/B-bundle

被引:29
|
作者
Pittie, H [1 ]
Ram, A
机构
[1] CUNY, Grad Ctr, Dept Math, New York, NY 10036 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1090/S1079-6762-99-00067-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a semisimple complex Lie group, B a Borel subgroup, and T subset of or equal to B a maximal torus of G. The projective variety G/B is a generalization of the classical ag variety. The structure sheaves of the Schubert subvarieties form a basis of the K-theory K(G/B) and every character of T gives rise to a line bundle on G/B. This note gives a formula for the product of a dominant line bundle and a Schubert class in K(G/B). This result generalizes a formula of Chevalley which computes an analogous product in cohomology. The new formula applies to the relative case, the K-theory of a G/B-bundle over a smooth base X, and is presented in this generality. In this setting the new formula is a generalization of recent G = GL(n)(C) results of Fulton and Lascoux.
引用
收藏
页码:102 / 107
页数:6
相关论文
共 50 条
  • [1] EQUIVARIANT K-THEORY OF SEMI-INFINITE FLAG MANIFOLDS AND THE PIERI-CHEVALLEY FORMULA
    Kato, Syu
    Naito, Satoshi
    Sagaki, Daisuke
    [J]. DUKE MATHEMATICAL JOURNAL, 2020, 169 (13) : 2421 - 2500
  • [2] A chevalley formula in equivariant K-theory
    Willems, Matthieu
    [J]. JOURNAL OF ALGEBRA, 2007, 308 (02) : 764 - 779
  • [3] A Pieri-type formula for the K-theory of a flag manifold
    Lenart, Cristian
    Sottile, Frank
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) : 2317 - 2342
  • [4] A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties
    Buch, Anders S.
    Chaput, Pierre-Emmanuel
    Mihalcea, Leonardo C.
    Perrin, Nicolas
    [J]. ALGEBRAIC GEOMETRY, 2018, 5 (05): : 568 - 595
  • [5] Pieri rules for the K-theory of cominuscule Grassmannians
    Buch, Anders Skovsted
    Ravikumar, Vijay
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 668 : 109 - 132
  • [6] Twisted K-theory and K-theory of bundle gerbes
    Bouwknegt, P
    Carey, AL
    Mathai, V
    Murray, MK
    Stevenson, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (01) : 17 - 45
  • [7] Twisted K-Theory and K-Theory of Bundle Gerbes
    Peter Bouwknegt
    Alan L. Carey
    Varghese Mathai
    Michael K. Murray
    Danny Stevenson
    [J]. Communications in Mathematical Physics, 2002, 228 : 17 - 49
  • [8] A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory
    Lenart, Cristian
    Naito, Satoshi
    Sagaki, Daisuke
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (03):
  • [9] Quantum K-theory Chevalley formulas in the parabolic case
    Kouno, Takafumi
    Lenart, Cristian
    Naito, Satoshi
    Sagaki, Daisuke
    Xu, Weihong
    [J]. JOURNAL OF ALGEBRA, 2024, 645 : 1 - 53
  • [10] Degree formula for connective K-theory
    Zainoulline, K.
    [J]. INVENTIONES MATHEMATICAE, 2010, 179 (03) : 507 - 522