A Pieri-Chevalley formula in the K-theory of a G/B-bundle

被引:29
|
作者
Pittie, H [1 ]
Ram, A
机构
[1] CUNY, Grad Ctr, Dept Math, New York, NY 10036 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1090/S1079-6762-99-00067-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a semisimple complex Lie group, B a Borel subgroup, and T subset of or equal to B a maximal torus of G. The projective variety G/B is a generalization of the classical ag variety. The structure sheaves of the Schubert subvarieties form a basis of the K-theory K(G/B) and every character of T gives rise to a line bundle on G/B. This note gives a formula for the product of a dominant line bundle and a Schubert class in K(G/B). This result generalizes a formula of Chevalley which computes an analogous product in cohomology. The new formula applies to the relative case, the K-theory of a G/B-bundle over a smooth base X, and is presented in this generality. In this setting the new formula is a generalization of recent G = GL(n)(C) results of Fulton and Lascoux.
引用
收藏
页码:102 / 107
页数:6
相关论文
共 50 条
  • [31] Degeneracy loci classes in K-theory - determinantal and Pfaffian formula
    Hudson, Thomas
    Ikeda, Takeshi
    Matsumura, Tomoo
    Naruse, Hiroshi
    [J]. ADVANCES IN MATHEMATICS, 2017, 320 : 115 - 156
  • [32] K-Theory and G-Theory of DG-stacks
    Joshua, Roy
    [J]. REGULATORS, 2012, 571 : 175 - 217
  • [33] K-theory and G-theory of derived algebraic stacks
    Khan, Adeel A.
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2022, 17 (01): : 1 - 61
  • [34] K-theory and G-theory of derived algebraic stacks
    Adeel A. Khan
    [J]. Japanese Journal of Mathematics, 2022, 17 : 1 - 61
  • [35] G-theory of root stacks and equivariant K-theory
    Dhillon, Ajneet
    Kobyzev, Ivan
    [J]. ANNALS OF K-THEORY, 2019, 4 (02) : 151 - 183
  • [36] PSEUDODIFFERENTIAL-OPERATORS WITH DISCONTINUOUS SYMBOLS - K-THEORY AND THE INDEX FORMULA
    PLAMENEVSKII, BA
    ROZENBLYUM, GV
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1992, 26 (04) : 266 - 275
  • [37] Equivariant algebraic K-theory of G-rings
    Mona Merling
    [J]. Mathematische Zeitschrift, 2017, 285 : 1205 - 1248
  • [38] Surjectivity for hamiltonian G-spaces in K-THEORY
    Harada, Megumi
    Landweber, Gregory D.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (12) : 6001 - 6025
  • [39] K-THEORY INVARIANTS FOR UNITARY G-BORDISM
    WILSON, G
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (96): : 499 - 526
  • [40] Projective Dirac operators, twisted K-theory, and local index formula
    Zhang, Dapeng
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2014, 8 (01) : 179 - 215