A remark on the faces of the cone of Euclidean distance matrices

被引:4
|
作者
Alfakih, AY [1 ]
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Euclidean distance matrices; gale transform; cones;
D O I
10.1016/j.laa.2005.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new characterization of the faces of the cone of Euclidean distance matrices (EDMs) was recently obtained by Tarazaga in terms of LGS(D), a special subspace associated with each EDM D. In this note we show that LGS(D) is nothing but the Gale subspace associated with EDMs. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:266 / 270
页数:5
相关论文
共 50 条
  • [21] Realizing Euclidean distance matrices by sphere intersection
    Alencar, Jorge
    Lavor, Carlile
    Liberti, Leo
    DISCRETE APPLIED MATHEMATICS, 2019, 256 : 5 - 10
  • [22] Rank of Hadamard powers of Euclidean distance matrices
    Boris Horvat
    Gašper Jaklič
    Iztok Kavkler
    Milan Randić
    Journal of Mathematical Chemistry, 2014, 52 : 729 - 740
  • [23] Rank of Hadamard powers of Euclidean distance matrices
    Horvat, Boris
    Jaklic, Gasper
    Kavkler, Iztok
    Randic, Milan
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (02) : 729 - 740
  • [24] 3 THEOREMS WITH APPLICATIONS TO EUCLIDEAN DISTANCE MATRICES
    FAREBROTHER, RW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 95 : 11 - 16
  • [25] A genetic algorithm for circulant Euclidean distance matrices
    Rivera-Gallego, W
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 97 (2-3) : 197 - 208
  • [26] NORM ESTIMATES FOR INVERSES OF EUCLIDEAN DISTANCE MATRICES
    SUN, XP
    JOURNAL OF APPROXIMATION THEORY, 1992, 70 (03) : 339 - 347
  • [27] A group majorization ordering for Euclidean distance matrices
    Kurata, Hiroshi
    Sakuma, Tadashi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 586 - 595
  • [28] Genetic algorithm for circulant Euclidean distance matrices
    Rivera-Gallego, Wilson
    Applied Mathematics and Computation (New York), 1998, 97 (2-3): : 197 - 208
  • [29] Kriging Model with Fractional Euclidean Distance Matrices
    Pozniak, Natalija
    Sakalauskas, Leonidas
    Saltyte, Laura
    INFORMATICA, 2019, 30 (02) : 367 - 390
  • [30] Graph rigidity via Euclidean distance matrices
    Alfakih, AY
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 310 (1-3) : 149 - 165