A genetic algorithm for circulant Euclidean distance matrices

被引:2
|
作者
Rivera-Gallego, W [1 ]
机构
[1] Mississippi State Univ, NSF, Engn Res Ctr Computat Field Simulat, Mississippi State, MS 39762 USA
关键词
D O I
10.1016/S0096-3003(97)10143-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a fast genetic algorithm to determine three-dimensional configurations of points that generate circulant Euclidean Distance Matrices (EDMs). A parallel implementation is possible by using the message passing interface (MPI) standard. In addition, theoretical results about the polyhedral structure of both the cone of circulant symmetric positive semidefinite matrices and the cone of circulant EDMs are introduced. (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:197 / 208
页数:12
相关论文
共 50 条
  • [1] Genetic algorithm for circulant Euclidean distance matrices
    Rivera-Gallego, Wilson
    [J]. Applied Mathematics and Computation (New York), 1998, 97 (2-3): : 197 - 208
  • [2] On Euclidean distance matrices
    Balaji, R.
    Bapat, R. B.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 424 (01) : 108 - 117
  • [3] Euclidean Distance Matrices
    Dokmanic, Ivan
    Parhizkar, Reza
    Ranieri, Juri
    Vetterli, Martin
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (06) : 12 - 30
  • [4] Euclidean distance fit of ellipses with a genetic algorithm
    de la Fraga, Luis Gerardo
    Silva, Israel Vite
    Cruz-Cortes, Nareli
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2007, 4448 : 359 - +
  • [5] Double circulant codes for the Lee and Euclidean distance
    Alahmadi, Adel
    Alshuhail, Altaf
    Altassan, Alaa
    Shoaib, Hatoon
    Sole, Patrick
    [J]. AIMS MATHEMATICS, 2023, 8 (10): : 23566 - 23577
  • [6] Generalized Euclidean distance matrices
    Balaji, R.
    Bapat, R. B.
    Goel, Shivani
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6908 - 6929
  • [7] Kinetic Euclidean Distance Matrices
    Tabaghi, Puoya
    Dokmanic, Ivan
    Vetterli, Martin
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 452 - 465
  • [8] On the eigenvalues of Euclidean distance matrices
    Alfakih, A. Y.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2008, 27 (03): : 237 - 250
  • [9] EIGENVALUES OF EUCLIDEAN DISTANCE MATRICES
    BALL, K
    [J]. JOURNAL OF APPROXIMATION THEORY, 1992, 68 (01) : 74 - 82
  • [10] ON EUCLIDEAN DISTANCE MATRICES OF GRAPHS
    Jaklic, Gasper
    Modic, Jolanda
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 574 - 589