Nonlinear stability of Euler flows in two-dimensional periodic domains

被引:9
|
作者
Wirosoetisno, D [1 ]
Shepherd, TG [1 ]
机构
[1] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
nonlinear stability; two-dimensional Euler flow; integral invariants; periodic boundary conditions; rotating sphere;
D O I
10.1080/03091929908204120
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The non-quadratic conservation laws of the two-dimensional Euler equations are used to show that the gravest modes in a doubly-periodic domain with aspect ratio L = 1 are stable up to translations (or structurally stable) for finite-amplitude disturbances. This extends a previous result based on conservation of energy and enstrophy alone. When L < 1, a saturation bound is established for the mode with wavenumber \k\ = L-1 (the next-gravest mode), which is linearly unstable. The method is applied to prove nonlinear structural stability of planetary wave two on a rotating sphere.
引用
收藏
页码:229 / 246
页数:18
相关论文
共 50 条
  • [1] Two-dimensional Euler flows in slowly deforming domains
    Vanneste, J.
    Wirosoetisno, D.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (06) : 774 - 799
  • [2] Stability of two-dimensional steady Euler flows with concentrated vorticity
    Guodong Wang
    [J]. Mathematische Annalen, 2024, 389 : 121 - 168
  • [3] Stability of two-dimensional steady Euler flows with concentrated vorticity
    Wang, Guodong
    [J]. MATHEMATISCHE ANNALEN, 2024, 389 (01) : 121 - 168
  • [4] Dynamics of two-dimensional time-periodic Euler fluid flows
    Boyland, P
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2005, 152 (1-2) : 87 - 106
  • [5] The Two-Dimensional Euler Equations on Singular Domains
    David Gérard-Varet
    Christophe Lacave
    [J]. Archive for Rational Mechanics and Analysis, 2013, 209 : 131 - 170
  • [6] The Two-Dimensional Euler Equations on Singular Domains
    Gerard-Varet, David
    Lacave, Christophe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (01) : 131 - 170
  • [7] Two-dimensional vortex sheets for the nonisentropic Euler equations: Nonlinear stability
    Morando, Alessandro
    Trebeschi, Paola
    Wang, Tao
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) : 5397 - 5430
  • [8] TWO-DIMENSIONAL EULER FLOWS WITH CONCENTRATED VORTICITIES
    del Pino, Manuel
    Esposito, Pierpaolo
    Musso, Monica
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (12) : 6381 - 6395
  • [9] Stability of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows
    Chen, Gui-Qiang
    Kukreja, Vaibhav
    Yuan, Hairong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [10] Uniqueness for the Two-Dimensional Euler Equations on Domains with Corners
    Lacave, Christophe
    Miot, Evelyne
    Wang, Chao
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (06) : 1725 - 1756