A Numerical Comparison Between Quasi-Monte Carlo and Sparse Grid Stochastic Collocation Methods

被引:9
|
作者
Azevedo, Juarez dos Santos [1 ]
Oliveira, Saulo Pomponet [2 ]
机构
[1] CETEC UFRB, BR-44380000 Cruz Das Almas, BA, Brazil
[2] DMAT UFPR, Ctr Politecn, BR-81531980 Curitiba, PR, Brazil
关键词
Karhunen-Loeve expansion; Monte Carlo; quasi-Monte Carlo; sparse grid; PARTIAL-DIFFERENTIAL-EQUATIONS; INTEGRATION; EFFICIENT;
D O I
10.4208/cicp.260111.230911a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quasi-Monte Carlo methods and stochastic collocation methods based on sparse grids have become popular with solving stochastic partial differential equations. These methods use deterministic points for multi-dimensional integration or interpolation without suffering from the curse of dimensionality. It is not evident which method is best, specially on random models of physical phenomena. We numerically study the error of quasi-Monte Carlo and sparse grid methods in the context of ground-water flow in heterogeneous media. In particular, we consider the dependence of the variance error on the stochastic dimension and the number of samples/collocation points for steady flow problems in which the hydraulic conductivity is a lognormal process. The suitability of each technique is identified in terms of computational cost and error tolerance.
引用
收藏
页码:1051 / 1069
页数:19
相关论文
共 50 条
  • [21] Random cubatures and quasi-Monte Carlo methods
    Antonov, Anton A.
    Ermakov, Sergej M.
    MONTE CARLO METHODS AND APPLICATIONS, 2015, 21 (03): : 179 - 187
  • [22] Quasi-Monte Carlo methods for Choquet integrals
    Nakano, Yumiharu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 287 : 63 - 66
  • [23] Quasi-Monte Carlo methods for the Kou model
    Baldeaux, Jan
    MONTE CARLO METHODS AND APPLICATIONS, 2008, 14 (04): : 281 - 302
  • [24] Quasi-Monte Carlo methods with applications in finance
    Pierre L’Ecuyer
    Finance and Stochastics, 2009, 13 : 307 - 349
  • [25] Quasi-Monte Carlo integration on the grid for sensitivity studies
    Emanouil Atanassov
    Aneta Karaivanova
    Todor Gurov
    Sofiya Ivanovska
    Mariya Durchova
    Dimitar Sl. Dimitrov
    Earth Science Informatics, 2010, 3 : 289 - 296
  • [26] Nonlinear filtering with quasi-Monte Carlo methods
    Daum, F
    Huang, J
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2003, 2003, 5204 : 458 - 479
  • [27] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    A. D. Gilbert
    I. G. Graham
    F. Y. Kuo
    R. Scheichl
    I. H. Sloan
    Numerische Mathematik, 2019, 142 : 863 - 915
  • [28] Quasi-Monte Carlo methods for elliptic BVPs
    Mascagni, M
    Karaivanova, A
    Hwang, CO
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 345 - 355
  • [29] Grid-based Quasi-Monte Carlo Applications
    Li, Yaohang
    Mascagni, Michael
    MONTE CARLO METHODS AND APPLICATIONS, 2005, 11 (01): : 39 - 55
  • [30] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    Gilbert, A. D.
    Graham, I. G.
    Kuo, F. Y.
    Scheichl, R.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2019, 142 (04) : 863 - 915