Geometric and spectral properties of directed graphs under a lower Ricci curvature bound
被引:5
|
作者:
Ozawa, Ryunosuke
论文数: 0引用数: 0
h-index: 0
机构:
Tohoku Univ, Adv Inst Mat Res AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, JapanTohoku Univ, Adv Inst Mat Res AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
Ozawa, Ryunosuke
[1
]
Sakurai, Yohei
论文数: 0引用数: 0
h-index: 0
机构:
Tohoku Univ, Adv Inst Mat Res AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, JapanTohoku Univ, Adv Inst Mat Res AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
Sakurai, Yohei
[1
]
Yamada, Taiki
论文数: 0引用数: 0
h-index: 0
机构:
Res Inst Humanity & Nat, Kita Ku, 457-4 Motoyama, Kyoto 6038047, JapanTohoku Univ, Adv Inst Mat Res AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
Yamada, Taiki
[2
]
机构:
[1] Tohoku Univ, Adv Inst Mat Res AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] Res Inst Humanity & Nat, Kita Ku, 457-4 Motoyama, Kyoto 6038047, Japan
For undirected graphs, the Ricci curvature introduced by Lin-Lu-Yau has been widely studied from various perspectives, especially geometric analysis. In the present paper, we discuss generalization problem of their Ricci curvature for directed graphs. We introduce a new generalization for strongly connected directed graphs by using the mean transition probability kernel which appears in the formulation of the Chung Laplacian. We conclude several geometric and spectral properties under a lower Ricci curvature bound extending previous results in the undirected case.
机构:
Univ Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, ItalyUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy
Colombo, Giulio
Magliaro, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ceara, Dept Matemat, Campus Pici, Bloco 914, BR-60455760 Fortaleza, CE, BrazilUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy
Magliaro, Marco
Mari, Luciano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy