Lower bound of coarse Ricci curvature on metric measure spaces and eigenvalues of Laplacian

被引:0
|
作者
Yu Kitabeppu
机构
[1] Tohoku University,Mathematical Institute
来源
Geometriae Dedicata | 2014年 / 169卷
关键词
Coarse Ricci curvature; Bishop–Gromov inequality; Eigenvalues; Laplacian; The curvature-dimension condition; 51F99; 53C23; 58J65; 53C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper,we investigate the coarse Ricci curvature on metric spaces with random walks. There exists no canonical random walk on metric space with a reference measure. However, we prove that a Bishop–Gromov inequality gives a lower bound of coarse Ricci curvature with respect to a random walk called an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-step random walk. The lower bound does not coincide with the constant corresponding to curvature in Bishop–Gromov inequality. As a corollary, we obtain a lower bound of coarse Ricci curvature with respect to an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}-step random walk for a metric measure space satisfying the curvature-dimension condition. Moreover we give an important example, Heisenberg group, which does not satisfy the curvature-dimension condition for any constant but has a lower bound of coarse Ricci curvature. We also have an estimate of the eigenvalues of the Laplacian by a lower bound of coarse Ricci curvature.
引用
收藏
页码:99 / 107
页数:8
相关论文
共 50 条