Automated 2D Segmentation of Prostate in T2-weighted MRI Scans

被引:0
|
作者
Jucevicius, J. [1 ]
Treigys, P. [1 ]
Bernataviciene, J. [1 ]
Briediene, R. [2 ]
Naruseviciute, I. [2 ]
Dzemyda, G. [1 ]
Medvedev, V. [1 ]
机构
[1] Vilnius Univ, Inst Math & Informat, Akad Str 4, LT-08663 Vilnius, Lithuania
[2] Vilnius Univ, Natl Canc Inst, Santariskiu Str 1, LT-08660 Vilnius, Lithuania
关键词
computer image processing; 2D prostate segmentation; magnetic resonance imaging (MRI); T2-weighted scan; OPTIC-NERVE DISC;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prostate cancer is the second most frequent tumor amongst men. Statistics shows that biopsy reveals only 70-80% clinical cancer cases. Multiparametric magnetic resonance imaging (MRI) technique comes to play and is used to help to determine the location to perform a biopsy. With the aim to automating the biopsy localization, prostate segmentation has to be performed in magnetic resonance images. Computer image analysis methods play the key role here. The problem of automated prostate magnetic resonance (MR) image segmentation is burdened by the fact that MRI signal intensity is not standardized: field of view and image appearance is for a large part determined by acquisition protocol, field strength, coil profile and scanner type. Authors overview the most recent Prostate MR image segmentation challenge results and provide insights on T2-weighted MRI scan images automated prostate segmentation problem by comparing the best obtained automatic segmentation algorithms and applying them to 2D prostate segmentation case. The most important benefit of this research will have medical doctors involved in the management of the cancer.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 50 条
  • [1] A Quality Control System for Automated Prostate Segmentation on T2-Weighted MRI
    Sunoqrot, Mohammed R. S.
    Selnaes, Kirsten M.
    Sandsmark, Elise
    Nketiah, Gabriel A.
    Zavala-Romero, Olmo
    Stoyanova, Radka
    Bathen, Tone F.
    Elschot, Mattijs
    [J]. DIAGNOSTICS, 2020, 10 (09)
  • [2] Automatic zonal segmentation of the prostate from 2D and 3D T2-weighted MRI and evaluation for clinical use
    Hamzaoui, Dimitri
    Montagne, Sarah
    Renard-Penna, Raphaele
    Ayache, Nicholas
    Delingette, Herve
    [J]. JOURNAL OF MEDICAL IMAGING, 2022, 9 (02) : 24001
  • [3] Automated olfactory bulb segmentation on high resolutional T2-weighted MRI
    Estrada, Santiago
    Lu, Ran
    Diers, Kersten
    Zeng, Weiyi
    Ehses, Philipp
    Stoecker, Tony
    Breteler, Monique M. B.
    Reuter, Martin
    [J]. NEUROIMAGE, 2021, 242
  • [4] Prostate Segmentation in MRI Using Fused T2-Weighted and Elastography Images
    Nir, Guy
    Sahebjavaher, Ramin S.
    Baghani, Ali
    Sinkus, Ralph
    Salcudean, Septimiu E.
    [J]. MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [5] Prostate Cancer: Comparison of 3D T2-Weighted With Conventional 2D T2-Weighted Imaging for Image Quality and Tumor Detection
    Rosenkrantz, Andrew B.
    Neil, Jeffry
    Kong, Xiangtian
    Melamed, Jonathan
    Babb, James S.
    Taneja, Samir S.
    Taouli, Bachir
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 194 (02) : 446 - 452
  • [6] MRI of the Pelvis in Women: 3D Versus 2D T2-Weighted Technique
    Proscia, Nicole
    Jaffe, Tracy A.
    Neville, Amy M.
    Wang, Carolyn L.
    Dale, Brian M.
    Merkle, Elmar M.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 195 (01) : 254 - 259
  • [7] IMPROVING PROSTATE WHOLE GLAND SEGMENTATION IN T2-WEIGHTED MRI WITH SYNTHETICALLY GENERATED DATA
    Fernandez-Quilez, Alvaro
    Larsen, Steinar Valle
    Goodwin, Morten
    Gulsrud, Thor Ole
    Kjosavik, Svein Reidar
    Oppedal, Ketil
    [J]. 2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1915 - 1919
  • [8] An Intercenter Intensity Normalization for Prostate T2-Weighted MRI
    Gholizadeh, N.
    Greer, P.
    Lau, P.
    Ramadan, S.
    Simpson, J.
    [J]. ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2017, 13 : 24 - 25
  • [9] Pseudo-T2 mapping for normalization of T2-weighted prostate MRI
    Kaia Ingerdatter Sørland
    Mohammed R. S. Sunoqrot
    Elise Sandsmark
    Sverre Langørgen
    Helena Bertilsson
    Christopher G. Trimble
    Gigin Lin
    Kirsten M. Selnæs
    Pål E. Goa
    Tone F. Bathen
    Mattijs Elschot
    [J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2022, 35 : 573 - 585
  • [10] Pseudo-T2 mapping for normalization of T2-weighted prostate MRI
    Sorland, Kaia Ingerdatter
    Sunoqrot, Mohammed R. S.
    Sandsmark, Elise
    Langorgen, Sverre
    Bertilsson, Helena
    Trimble, Christopher G.
    Lin, Gigin
    Selnaes, Kirsten M.
    Goa, Pal E.
    Bathen, Tone F.
    Elschot, Mattijs
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (04) : 573 - 585