IMPROVING PROSTATE WHOLE GLAND SEGMENTATION IN T2-WEIGHTED MRI WITH SYNTHETICALLY GENERATED DATA

被引:7
|
作者
Fernandez-Quilez, Alvaro [1 ,2 ]
Larsen, Steinar Valle [2 ,3 ]
Goodwin, Morten [4 ]
Gulsrud, Thor Ole [1 ]
Kjosavik, Svein Reidar [5 ]
Oppedal, Ketil [2 ,3 ,6 ]
机构
[1] Univ Stavanger, Dept Qual & Hlth Technol, Stavanger, Norway
[2] Stavanger Univ Hosp, Stavanger Med Imaging Lab SMIL, Stavanger, Norway
[3] Univ Stavanger, Dept Elect Engn & Comp Sci, Stavanger, Norway
[4] Univ Agder, Dept ICT, Grimstad, Norway
[5] Stavanger Univ Hosp, Gen Practice & Care Coordinat Res Grp, Stavanger, Norway
[6] Stavanger Univ Hosp, Ctr Age Related Med, Stavanger, Norway
关键词
MRI; prostate; segmentation; convolutional neural networks; generative adversarial networks;
D O I
10.1109/ISBI48211.2021.9433793
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Whole gland (WG) segmentation of the prostate plays a crucial role in detection, staging and treatment planning of prostate cancer (PCa). Despite promise shown by deep learning (DL) methods, they rely on the availability of a considerable amount of annotated data. Augmentation techniques such as translation and rotation of images present an alternative to increase data availability. Nevertheless, the amount of information provided by the transformed data is limited due to the correlation between the generated data and the original. Based on the recent success of generative adversarial networks (GAN) in producing synthetic images for other domains as well as in the medical domain, we present a pipeline to generate WG segmentation masks and synthesize T2-weighted MRI of the prostate based on a publicly available multi-center dataset. Following, we use the generated data as a form of data augmentation. Results show an improvement in the quality of the WG segmentation when compared to standard augmentation techniques.
引用
收藏
页码:1915 / 1919
页数:5
相关论文
共 50 条
  • [1] A Quality Control System for Automated Prostate Segmentation on T2-Weighted MRI
    Sunoqrot, Mohammed R. S.
    Selnaes, Kirsten M.
    Sandsmark, Elise
    Nketiah, Gabriel A.
    Zavala-Romero, Olmo
    Stoyanova, Radka
    Bathen, Tone F.
    Elschot, Mattijs
    [J]. DIAGNOSTICS, 2020, 10 (09)
  • [2] Prostate Segmentation in MRI Using Fused T2-Weighted and Elastography Images
    Nir, Guy
    Sahebjavaher, Ramin S.
    Baghani, Ali
    Sinkus, Ralph
    Salcudean, Septimiu E.
    [J]. MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [3] Automated 2D Segmentation of Prostate in T2-weighted MRI Scans
    Jucevicius, J.
    Treigys, P.
    Bernataviciene, J.
    Briediene, R.
    Naruseviciute, I.
    Dzemyda, G.
    Medvedev, V.
    [J]. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2017, 12 (01) : 53 - 60
  • [4] An Intercenter Intensity Normalization for Prostate T2-Weighted MRI
    Gholizadeh, N.
    Greer, P.
    Lau, P.
    Ramadan, S.
    Simpson, J.
    [J]. ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2017, 13 : 24 - 25
  • [5] Variability of manual segmentation of the prostate in axial T2-weighted MRI: A multi-reader study
    Becker, Anton S.
    Chaitanya, Krishna
    Schawkat, Khoschy
    Muehlematter, Urs J.
    Hoetker, Andreas M.
    Konukoglu, Ender
    Donati, Olivio F.
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2019, 121
  • [6] Challenge of prostate MRI segmentation on T2-weighted images: inter-observer variability and impact of prostate morphology
    Sarah Montagne
    Dimitri Hamzaoui
    Alexandre Allera
    Malek Ezziane
    Anna Luzurier
    Raphaelle Quint
    Mehdi Kalai
    Nicholas Ayache
    Hervé Delingette
    Raphaële Renard-Penna
    [J]. Insights into Imaging, 12
  • [7] Challenge of prostate MRI segmentation on T2-weighted images: inter-observer variability and impact of prostate morphology
    Montagne, Sarah
    Hamzaoui, Dimitri
    Allera, Alexandre
    Ezziane, Malek
    Luzurier, Anna
    Quint, Raphaelle
    Kalai, Mehdi
    Ayache, Nicholas
    Delingette, Herve
    Renard-Penna, Raphaele
    [J]. INSIGHTS INTO IMAGING, 2021, 12 (01)
  • [8] Pseudo-T2 mapping for normalization of T2-weighted prostate MRI
    Kaia Ingerdatter Sørland
    Mohammed R. S. Sunoqrot
    Elise Sandsmark
    Sverre Langørgen
    Helena Bertilsson
    Christopher G. Trimble
    Gigin Lin
    Kirsten M. Selnæs
    Pål E. Goa
    Tone F. Bathen
    Mattijs Elschot
    [J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 2022, 35 : 573 - 585
  • [9] The Reproducibility of Deep Learning-Based Segmentation of the Prostate Gland and Zones on T2-Weighted MR Images
    Sunoqrot, Mohammed R. S.
    Selnaes, Kirsten M.
    Sandsmark, Elise
    Langorgen, Sverre
    Bertilsson, Helena
    Bathen, Tone F.
    Elschot, Mattijs
    [J]. DIAGNOSTICS, 2021, 11 (09)
  • [10] Pseudo-T2 mapping for normalization of T2-weighted prostate MRI
    Sorland, Kaia Ingerdatter
    Sunoqrot, Mohammed R. S.
    Sandsmark, Elise
    Langorgen, Sverre
    Bertilsson, Helena
    Trimble, Christopher G.
    Lin, Gigin
    Selnaes, Kirsten M.
    Goa, Pal E.
    Bathen, Tone F.
    Elschot, Mattijs
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (04) : 573 - 585