A Fast, Electromagnetically Driven Supersonic Gas Jet Target For Laser Wakefield Acceleration

被引:0
|
作者
Krishnan, Mahadevan [1 ]
Wright, Jason [1 ]
Ma, Timothy [1 ]
机构
[1] Alameda Appl Sci Corp, San Leandro, CA USA
来源
关键词
supersonic gas jet; fast gas valve; Wakefield accelerator;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
Laser-Wakefield acceleration (LWFA) promises electron accelerators with unprecedented electric field gradients. Gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for LWFA. Present gas jets have lengths of only 2-4 mm at densities of 1-4x10(19) /cm(3), sufficient for self-trapping and acceleration to energies up to similar to 150 MeV. While 3 cm capillary structures have been used to accelerate beams up to I GeV, gas jets require a well-collimated beam that is >= 10 mm in length and <500 mu m in width, with a tunable gas density profile to optimize the LWFA process. This paper describes the design of an electromagnetically driven, fast supersonic gas valve that opens in <100 mu s, closes in <500 mu s and can operate at pressures beyond 1000psia. The motion of the valve seat (flyer plate) is measured using a laser probe and compared with predictions of a model. The valve design is based on an optimization of many parameters: flyer plate mass and durability, driver bank speed and stored energy for high rep-rate (>10Hz) operation, return spring non-linearity and materials selection for various components. Optimization of the valve dynamics and preliminary designs of the supersonic flow patterns are described.
引用
收藏
页码:264 / 269
页数:6
相关论文
共 50 条
  • [41] Compton scattering x-ray sources driven by laser wakefield acceleration
    Hartemann, F. V.
    Gibson, D. J.
    Brown, W. J.
    Rousse, A.
    Phuoc, K. Ta
    Mallka, V.
    Faure, J.
    Pukhov, A.
    [J]. PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2007, 10 (01):
  • [42] Laser wakefield acceleration driven by ATF CO2 laser (STELLA-LW)
    Kimura, WD
    Andreev, NE
    Babzien, M
    Ben-Zvi, I
    Cline, DB
    Dilley, CE
    Gottschalk, SC
    Hooker, SA
    Kusche, KP
    Kuznetsov, SV
    Pantell, RH
    Pavlishin, IV
    Pogorelsky, IV
    Pogosova, AA
    Steinhauer, LC
    Ting, A
    Yakimenko, V
    Zigler, A
    Zhou, F
    [J]. ADVANCED ACCELERATOR CONCEPTS, 2004, 737 : 534 - 540
  • [43] High Energy Electron Beams From a Laser Wakefield Acceleration with a Long Gas Jet (vol 71, pg 256, 2017)
    Kim, Jaehoon
    Hwangbo, Yong Hun
    Lee, Shin-Yeong
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 71 (09) : 592 - 592
  • [44] Wakefield Acceleration in a Jet from a Neutrino-driven Accretion Flow around a Black Hole
    Kato, Yoshiaki
    Ebisuzaki, Toshikazu
    Tajima, Toshiki
    [J]. ASTROPHYSICAL JOURNAL, 2022, 929 (01):
  • [45] Discharge Characteristics of a Gas-Filled Capillary Plasma for Laser Wakefield Acceleration
    Kim, M. S.
    Jang, D. G.
    Uhm, H. S.
    Hwang, S. W.
    Lee, I. W.
    Suk, H.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (08) : 1638 - 1643
  • [46] Generation of electron beams from a laser wakefield acceleration in pure neon gas
    Li, Song
    Hafz, Nasr A. M.
    Mirzaie, Mohammad
    Elsied, Ahmed M. M.
    Ge, Xulei
    Liu, Feng
    Sokollik, Thomas
    Tao, Mengze
    Chen, Liming
    Chen, Min
    Sheng, Zhengming
    Zhang, Jie
    [J]. PHYSICS OF PLASMAS, 2014, 21 (08)
  • [47] Development of a density-tapered capillary gas cell for laser wakefield acceleration
    Kim, J.
    Phung, V. L. J.
    Roh, K.
    Kim, M.
    Kang, K.
    Suk, H.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (02):
  • [48] Simulation study on gas flow in curved capillary used in laser wakefield acceleration
    Zhao, Yue-Qi
    Cui, Pei-Lin
    Li, Jian-Long
    Li, Bo-Yuan
    Zhu, Xin-Zhe
    Chen, Min
    Liu, Zhen-Yu
    [J]. ACTA PHYSICA SINICA, 2023, 72 (18)
  • [49] Modular supersonic nozzle for the stable laser-driven electron acceleration
    Lei, Zhenzhe
    Jin, Zhan
    Gu, Yan-Jun
    Sato, Shingo
    Zhidkov, Alexei
    Rondepierre, Alexandre
    Huang, Kai
    Nakanii, Nobuhiko
    Daito, Izuru
    Kando, Masaki
    Hosokai, Tomonao
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (01):
  • [50] Solid hydrogen target for laser driven proton acceleration
    Perin, J. P.
    Garcia, S.
    Chatain, D.
    Margarone, D.
    [J]. LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS III; AND MEDICAL APPLICATIONS OF LASER-GENERATED BEAMS OF PARTICLES III, 2015, 9514