Depleted fully monolithic active CMOS pixel sensors (DMAPS) in high resistivity 150 nm technology for LHC

被引:8
|
作者
Hirono, Toko [1 ]
Barbero, Marlon [2 ]
Barrillon, Pierre [2 ]
Bhat, Siddharth [2 ]
Breugnon, Patrick [2 ]
Caicedo, Ivan [1 ]
Chen, Zongde [2 ]
Daas, Michael [1 ]
Degerli, Yavuz [3 ]
Godiot, Stphanie [2 ]
Guilloux, Fabrice [3 ]
Hemperek, Tomasz [1 ]
Huegging, Fabian [1 ]
Krueger, Hans [1 ]
Pangaud, Patrick [2 ]
Rymaszewski, Piotr [1 ]
Schwemling, Philippe [3 ]
Vandenbroucke, Maxence [3 ]
Wang, Tianyang [1 ]
Wermes, Norbert [1 ]
机构
[1] Univ Bonn, Nussallee 12, D-53121 Bonn, Germany
[2] Ctr Phys Particules Marseille, 163 Ave Luminy, Marseille, France
[3] CEA Saclay, IRFU, F-91191 Gif Sur Yvette, France
基金
欧盟地平线“2020”;
关键词
Depleted monolithic CMOS active pixel sensor; Pixel detector; Silicon detector; Radiation hardness;
D O I
10.1016/j.nima.2018.10.059
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Depleted monolithic CMOS1 active pixel sensors (DMAPS) have been developed to demonstrate their suitability as pixel detectors in the outer layers of the ATLAS Inner Tracker (ITk) pixel detector in the High-Luminosity Large Hadron Collider (HL-LHC). Two prototypes have been fabricated using a 150 nm CMOS technology on high resistivity (>= 2 k Omega cm) wafers. The chip size of 10 mm x 10 mm is similar to that of the current FE-I3 ATLAS pixel detector readout chip. One of the prototypes is used for detailed characterization of the sensor and analog front end circuitry of the DMAPS. The other one is a fully monolithic DMAPS, including fast readout digital logics that handle the required hit rate. To yield a strong homogeneous electric field within the sensor volume, back-side process of the wafer was tested. The prototypes were irradiated with X-rays up to a total ionization dose (TID) of 50 Mrad(SiO2) and with neutrons up to a 1 MeV neutron equivalent fluence of 10(15) n(eq)/cm(2) to test non-ionizing energy loss (NIEL) effects. The analog front end circuitry maintained its performance after TID irradiation, and the hit efficiency at <10(-7) noise occupancy was as high as 98.9% after NIEL irradiation.
引用
收藏
页码:87 / 91
页数:5
相关论文
共 50 条
  • [41] CMOS Monolithic Active Pixel Sensors (MAPS): Developments and future outlook
    Turchetta, R.
    Fant, A.
    Gasiorek, P.
    Esbrand, C.
    Griffiths, J. A.
    Metaxas, M. G.
    Royle, G. J.
    Speller, R.
    Venanzi, C.
    van der Stelt, P. F.
    Verheij, H.
    Li, G.
    Theodoridis, S.
    Georgiou, H.
    Cavouras, D.
    Hall, G.
    Noy, M.
    Jones, J.
    Leaver, J.
    Machin, D.
    Greenwood, S.
    Khaleeq, M.
    Schulerud, H.
    Ostby, J. M.
    Triantis, F.
    Asimidis, A.
    Bolanakis, D.
    Manthos, N.
    Longo, R.
    Bergamaschi, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 582 (03): : 866 - 870
  • [42] Performance of capacitively coupled active pixel sensors in 180 nm HV-CMOS technology after irradiation to HL-LHC fluences
    Feigl, S.
    JOURNAL OF INSTRUMENTATION, 2014, 9
  • [43] Development of deep N-well monolithic active pixel sensors in a 0.13 μm CMOS technology
    Bettarini, S.
    Bardi, A.
    Batignani, G.
    Bosi, F.
    Calderini, G.
    Cenci, R.
    Dell'Orso, M.
    Forti, F.
    Giannetti, P.
    Giorgi, M. A.
    Lusiani, A.
    Marchiori, G.
    Morsani, F.
    Neri, N.
    Paoloni, E.
    Rizzo, G.
    Walsh, J.
    Andreoli, C.
    Pozzati, E.
    Ratti, L.
    Speziali, V.
    Manghisoni, M.
    Re, V.
    Traversi, G.
    Bosisio, L.
    Giacomini, G.
    Lanceri, L.
    Rachevskaia, I.
    Vitale, L.
    Bruschi, M.
    Giacobbe, B.
    Semprini, N.
    Spighi, R.
    Villa, M.
    Zoccoli, A.
    Gamba, D.
    Giraudo, G.
    Mereu, P.
    Dalla Betta, G. F.
    Soncini, G.
    Fontana, G.
    Pancheri, L.
    Verzellesi, G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 572 (01): : 277 - 280
  • [44] Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency
    Clarke, A.
    Stefanov, K.
    Johnston, N.
    Holland, A.
    JOURNAL OF INSTRUMENTATION, 2015, 10
  • [45] Active Pixel Sensors on high resistivity silicon and their readout
    Chen, W
    De Geronimo, G
    Li, Z
    O'Connor, P
    Radeka, V
    Rehak, P
    Smith, GC
    Yu, B
    2001 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORDS, VOLS 1-4, 2002, : 980 - 985
  • [46] Monte Carlo simulations of Fully Depleted CMOS pixel sensors for radiation detection applications
    Ferrero, Chiara
    Neubuser, Coralie
    Pancheri, Lucio
    Rivetti, Angelo
    2023 18TH CONFERENCE ON PH.D RESEARCH IN MICROELECTRONICS AND ELECTRONICS, PRIME, 2023, : 101 - 104
  • [47] Ultra Thin Fully Depleted Active Pixel Sensors Processed on SOI Wafers
    Andricek, L.
    Liemann, G.
    Moser, H. -G.
    Richter, R. H.
    Schweinfest, B.
    2010 IEEE INTERNATIONAL SOI CONFERENCE, 2010,
  • [48] Development of radiation hard CMOS active pixel sensors for HL-LHC
    Pernegger, Heinz
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 824 : 446 - 448
  • [49] Design and readout architecture of a monolithic binary active pixel sensor in TPSCo 65 nm CMOS imaging technology
    Cecconi, L.
    Piro, F.
    Melo, J. L. A. de
    Deng, W.
    Hong, G. H.
    Snoeys, W.
    Mager, M.
    Suljic, M.
    Kugathasan, T.
    Buckland, M.
    Rinella, G. Aglieri
    Leitao, P. V.
    Reidt, F.
    Baudot, J.
    Bugiel, S.
    Colledani, C.
    Contin, G.
    Hu, C.
    Kluge, A.
    Kluit, R.
    Vitkovskiy, A.
    Russo, R.
    Becht, P.
    Grelli, A.
    Hasenbichler, J.
    Munker, M.
    Soltveit, H. K.
    Menzel, M. W.
    Sonneveld, J.
    Tiltmann, N.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (02):
  • [50] Characterization of active pixel sensors in 0.25 μm CMOS technology
    Velthuis, JJ
    Allport, PP
    Casse, G
    Evans, A
    Turchetta, R
    Tyndel, A
    Villani, G
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (05) : 1887 - 1891