Analysing Congestion Problems in Multi-agent Reinforcement Learning

被引:0
|
作者
Radulescu, Roxana [1 ]
Vrancx, Peter [1 ]
Nowe, Ann [1 ]
机构
[1] Vrije Univ Brussel, Brussels, Belgium
关键词
Multi-agent reinforcement learning; Congestion problems; Resource abstraction;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We extend the study of congestion problems to a more realistic scenario, the Road Network Domain (RND), where the resources are no longer independent, but rather part of a network, thus choosing one path will also impact the load of another one having common road segments. We demonstrate the application of state-of-the-art multi-agent reinforcement learning methods for this new congestion model and analyse their performance. RND allows us to highlight an important limitation of resource abstraction and show that the difference rewards approach manages to better capture and inform the agents about the dynamics of the environment.
引用
收藏
页码:1705 / 1707
页数:3
相关论文
共 50 条
  • [21] Heuristically accelerated reinforcement learning modularization for multi-agent multi-objective problems
    Ferreira, Leonardo Anjoletto
    Costa Ribeiro, Carlos Henrique
    da Costa Bianchi, Reinaldo Augusto
    [J]. APPLIED INTELLIGENCE, 2014, 41 (02) : 551 - 562
  • [22] Heuristically accelerated reinforcement learning modularization for multi-agent multi-objective problems
    Leonardo Anjoletto Ferreira
    Carlos Henrique Costa Ribeiro
    Reinaldo Augusto da Costa Bianchi
    [J]. Applied Intelligence, 2014, 41 : 551 - 562
  • [23] TEAM POLICY LEARNING FOR MULTI-AGENT REINFORCEMENT LEARNING
    Cassano, Lucas
    Alghunaim, Sulaiman A.
    Sayed, Ali H.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3062 - 3066
  • [24] Aggregation Transfer Learning for Multi-Agent Reinforcement learning
    Xu, Dongsheng
    Qiao, Peng
    Dou, Yong
    [J]. 2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 547 - 551
  • [25] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [26] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [27] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    [J]. Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [28] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    [J]. AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [29] Generalized learning automata for multi-agent reinforcement learning
    De Hauwere, Yann-Michael
    Vrancx, Peter
    Nowe, Ann
    [J]. AI COMMUNICATIONS, 2010, 23 (04) : 311 - 324
  • [30] MAPDP: Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems
    Zong, Zefang
    Zheng, Meng
    Li, Yong
    Jin, Depeng
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9980 - 9988