CO2 CAPTURE BY BIOMIMETIC ADSORPTION: ENZYME MEDIATED CO2 ABSORPTION FOR POST-COMBUSTION CARBON SEQUESTRATION AND STORAGE PROCESS

被引:9
|
作者
Russo, Maria Elena [1 ]
Olivieri, Giuseppe [2 ,3 ]
Salatino, Piero [2 ]
Marzocchella, Antonio [2 ]
机构
[1] CNR, Combust Res Inst, I-80125 Naples, Italy
[2] Univ Naples Federico II, Dipartimento Ingn Chim Mat & Prod Ind, I-80125 Naples, Italy
[3] Wageningen Univ, NL-6700 EV Wageningen, Netherlands
来源
关键词
absorption; carbon capture; carbonic anhydrase; unit design; BUTANOL PRODUCTION; MASS-TRANSFER; ANHYDRASE II; HYDRATION; KINETICS; DIOXIDE; MICROREACTOR; DIFFUSIVITY;
D O I
10.30638/eemj.2013.194
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The huge emission of greenhouse gases from fossil-fuelled power plants is emphasizing the need for efficient Carbon Capture and Storage (CCS) technologies. The biomimetic CO2 absorption in aqueous solutions has been recently investigated as a promising innovative alternative for post-combustion CCS. The carbonic anhydrase (CA) - a broad group of ubiquitous enzymes - may catalyse the CO2 hydration reaction and then to promote CO2 absorption rate into aqueous solutions. Nevertheless the research on this issue is quite active, the reliable designing of absorption units still requires more details. The present study proposes the design of a random packing absorption column operated with alkaline solvents supplied with CA. The height of the packed bed to fulfil the 80% of CO2 abatement from a flue gas stream was as large as 15-20 m. A comprehensive discussion of effects of operating conditions and of CA features on unit performance is reported.
引用
收藏
页码:1593 / 1601
页数:9
相关论文
共 50 条
  • [41] ZnO/Carbon Spheres with Excellent Regenerability for Post-Combustion CO2 Capture
    Pelech, Iwona
    Sibera, Daniel
    Staciwa, Piotr
    Kusiak-Nejman, Ewelina
    Kapica-Kozar, Joanna
    Wanag, Agnieszka
    Narkiewicz, Urszula
    Morawski, Antoni W.
    MATERIALS, 2021, 14 (21)
  • [42] An evaluation of carbon-based adsorbents for post-combustion CO2 capture
    Yapici, Ece
    Akgun, Hasret
    Ozkan, Aysun
    Gunkaya, Zerrin
    Banar, Mufide
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2023, 29 (03) : 265 - 277
  • [43] Monoethanolamine Degradation Rates in Post-combustion CO2 Capture Plants with the Capture of 100% of the Added CO2
    Mullen, Daniel
    Braakhuis, Lucas
    Knuutila, Hanna Katariina
    Gibbins, Jon
    Lucquiaud, Mathieu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (31) : 13677 - 13691
  • [44] Post-combustion CO2 capture process: Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution
    Mores, Patricia
    Scenna, Nicolas
    Mussati, Sergio
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2011, 89 (09): : 1587 - 1599
  • [45] New solvent blends for post-combustion CO2 capture
    Hanna K.Knuutila
    Rune Rennemo
    Arlinda F.Ciftja
    Green Energy & Environment, 2019, 4 (04) : 439 - 452
  • [46] Thermal degradation of morpholine in CO2 post-combustion capture
    Ogidi, Michael O.
    Thompson, Warren A.
    Maroto-Valer, M. Mercedes
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1033 - 1037
  • [47] Highly efficient absorbents for post-combustion CO2 capture
    Shim, Jae-Goo
    Kim, Jun-Han
    Lee, Ji Hyun
    Jang, Kyung-Ryong
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 779 - 782
  • [48] Advancement in porous adsorbents for post-combustion CO2 capture
    Modak, Arindam
    Jana, Subhra
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 276 : 107 - 132
  • [49] Optimisation of post-combustion CO2 capture for flexible operation
    Mac Dowell, N.
    Shah, N.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1525 - 1535
  • [50] Cascaded Membrane Processes for Post-Combustion CO2 Capture
    Zhao, Li
    Riensche, Ernst
    Weber, Michael
    Stolten, Detlef
    CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (03) : 489 - 496