Model Selection and Estimation of a Finite Shifted-Scaled Dirichlet Mixture Model

被引:9
|
作者
Alsuroji, Rua [1 ,2 ]
Zamzami, Nuha [1 ,3 ]
Bouguila, Nizar [1 ]
机构
[1] Concordia Univ, CIISE, Montreal, PQ, Canada
[2] Umm Al Qura Univ, Coll Comp & Informat Syst, Mecca, Saudi Arabia
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
关键词
Data clustering; Medical sciences; Mixture models; Shifted-scaled Dirichlet distribution; Unsupervised learning; Writer identification;
D O I
10.1109/ICMLA.2018.00112
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an unsupervised learning algorithm for a finite mixture model of shifted-scaled Dirichlet distributions. Maximum likelihood and Newton raphson approaches are used for parameters estimation. In this research work, we address the flexibility challenge of the Dirichlet distribution by having another set of parameters for the location (beside the Scale parameter) that add functional probability models. This paper evaluates the capability of the discussed model to perform the categorization using both synthetic and real data related to the medical science to help in selecting wart treatment method, in the business field to detect the reasons behind employees absenteeism, and the writer identification application to define the author of off-line handwritten documents. We also compare the model performance against scaled Dirichlet, the classic Dirichlet, and Gaussian mixture models. Finally, experimental results are presented on the selected datasets. Besides, we apply the minimum message length to determine the optimal number of the components found within each dataset.
引用
收藏
页码:707 / 713
页数:7
相关论文
共 50 条
  • [41] Semiparametric estimation and model selection for conditional mixture copula models
    Liu, Guannan
    Long, Wei
    Yang, Bingduo
    Cai, Zongwu
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (01) : 287 - 330
  • [42] Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications
    Bouguila, N
    Ziou, D
    [J]. PATTERN RECOGNITION LETTERS, 2005, 26 (12) : 1916 - 1925
  • [43] Entropy-Based Variational Learning of Finite Generalized Inverted Dirichlet Mixture Model
    Ahmadzadeh, Mohammad Sadegh
    Manouchehri, Narges
    Ennajari, Hafsa
    Bouguila, Nizar
    Fan, Wentao
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 130 - 143
  • [44] Image Segmentation Based on Finite IBL Mixture Model with a Dirichlet Compound Multinomial Prior
    Guo, Zhiyan
    Fan, Wentao
    [J]. AIPR 2020: 2020 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION, 2020, : 88 - 92
  • [45] A powreful finite mixture model based on the generalized Dirichlet distribution: Unsupervised learning and applications
    Bouguila, N
    Ziou, D
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, 2004, : 280 - 283
  • [46] Research on dirichlet process mixture model for clustering
    Zhang, Biyao
    Zhang, Kaisong
    Zhong, Luo
    Zhang, Xuanya
    [J]. Ingenierie des Systemes d'Information, 2019, 24 (02): : 183 - 189
  • [47] Interactive Generalized Dirichlet Mixture Allocation Model
    Maanicshah, Kamal
    Amayri, Manar
    Bouguila, Nizar
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 33 - 42
  • [48] Data Clustering Using Variational Learning of Finite Scaled Dirichlet Mixture Models with Component Splitting
    Hieu Nguyen
    Maanicshah, Kamal
    Azam, Muhammad
    Bouguila, Nizar
    [J]. IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II, 2019, 11663 : 117 - 128
  • [49] A Dirichlet Process Mixture Model for Spherical Data
    Straub, Julian
    Chang, Jason
    Freifeld, Oren
    Fisher, John W., III
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 930 - 938
  • [50] Hypothesis testing in finite mixture of regressions: Sparsity and model selection uncertainty
    Khalili, Abbas
    Vidyashankar, Anand N.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (03): : 429 - 457