Model Selection and Estimation of a Finite Shifted-Scaled Dirichlet Mixture Model

被引:9
|
作者
Alsuroji, Rua [1 ,2 ]
Zamzami, Nuha [1 ,3 ]
Bouguila, Nizar [1 ]
机构
[1] Concordia Univ, CIISE, Montreal, PQ, Canada
[2] Umm Al Qura Univ, Coll Comp & Informat Syst, Mecca, Saudi Arabia
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
关键词
Data clustering; Medical sciences; Mixture models; Shifted-scaled Dirichlet distribution; Unsupervised learning; Writer identification;
D O I
10.1109/ICMLA.2018.00112
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an unsupervised learning algorithm for a finite mixture model of shifted-scaled Dirichlet distributions. Maximum likelihood and Newton raphson approaches are used for parameters estimation. In this research work, we address the flexibility challenge of the Dirichlet distribution by having another set of parameters for the location (beside the Scale parameter) that add functional probability models. This paper evaluates the capability of the discussed model to perform the categorization using both synthetic and real data related to the medical science to help in selecting wart treatment method, in the business field to detect the reasons behind employees absenteeism, and the writer identification application to define the author of off-line handwritten documents. We also compare the model performance against scaled Dirichlet, the classic Dirichlet, and Gaussian mixture models. Finally, experimental results are presented on the selected datasets. Besides, we apply the minimum message length to determine the optimal number of the components found within each dataset.
引用
收藏
页码:707 / 713
页数:7
相关论文
共 50 条
  • [21] A scaled dirichlet-based predictive model for occupancy estimation in smart buildings
    Guo, Jiaxun
    Amayri, Manar
    Fan, Wentao
    Bouguila, Nizar
    [J]. APPLIED INTELLIGENCE, 2024, : 6981 - 6996
  • [22] Latent Dirichlet mixture model
    Chien, Jen-Tzung
    Lee, Chao-Hsi
    Tan, Zheng-Hua
    [J]. NEUROCOMPUTING, 2018, 278 : 12 - 22
  • [23] Finite mixture model selection for total energy consumption
    Fallahigilan, S.
    Sayyareh, A.
    [J]. INTERNATIONAL JOURNAL OF ENERGY AND STATISTICS, 2016, 4 (02)
  • [24] Data Clustering using Variational Learning of Finite Scaled Dirichlet Mixture Models
    Hieu Nguyen
    Azam, Muhammad
    Bouguila, Nizar
    [J]. 2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 1391 - 1396
  • [25] MCMC ESTIMATION OF FINITE GENERALIZED GAMMA MIXTURE MODEL
    Zou, Yan-Hui
    Li, Heng-Chao
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5935 - 5938
  • [26] Minimum distance estimation in a finite mixture regression model
    Tang, Qingguo
    Karunamuni, Rohana J.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 120 : 185 - 204
  • [27] Finite mixture regression: A sparse variable selection by model selection for clustering
    Devijver, Emilie
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2642 - 2674
  • [28] Minimum Hellinger distance estimation for a semiparametric location-shifted mixture model
    Wu, Jingjing
    Zhou, Xiaofan
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (13) : 2507 - 2527
  • [29] Unsupervised learning of a finite mixture model based on the Dirichlet distribution and its application
    Bouguila, N
    Ziou, D
    Vaillancourt, J
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (11) : 1533 - 1543
  • [30] Sampling the Dirichlet mixture model with slices
    Walker, Stephen G.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2007, 36 (01) : 45 - 54