Model Selection and Estimation of a Finite Shifted-Scaled Dirichlet Mixture Model

被引:9
|
作者
Alsuroji, Rua [1 ,2 ]
Zamzami, Nuha [1 ,3 ]
Bouguila, Nizar [1 ]
机构
[1] Concordia Univ, CIISE, Montreal, PQ, Canada
[2] Umm Al Qura Univ, Coll Comp & Informat Syst, Mecca, Saudi Arabia
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
关键词
Data clustering; Medical sciences; Mixture models; Shifted-scaled Dirichlet distribution; Unsupervised learning; Writer identification;
D O I
10.1109/ICMLA.2018.00112
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an unsupervised learning algorithm for a finite mixture model of shifted-scaled Dirichlet distributions. Maximum likelihood and Newton raphson approaches are used for parameters estimation. In this research work, we address the flexibility challenge of the Dirichlet distribution by having another set of parameters for the location (beside the Scale parameter) that add functional probability models. This paper evaluates the capability of the discussed model to perform the categorization using both synthetic and real data related to the medical science to help in selecting wart treatment method, in the business field to detect the reasons behind employees absenteeism, and the writer identification application to define the author of off-line handwritten documents. We also compare the model performance against scaled Dirichlet, the classic Dirichlet, and Gaussian mixture models. Finally, experimental results are presented on the selected datasets. Besides, we apply the minimum message length to determine the optimal number of the components found within each dataset.
引用
收藏
页码:707 / 713
页数:7
相关论文
共 50 条
  • [1] Proportional data modeling via selection and estimation of a finite mixture of scaled Dirichlet distributions
    Zamzami, Nuha
    Alsuroji, Rua
    Eromonsele, Oboh
    Bouguila, Nizar
    [J]. COMPUTATIONAL INTELLIGENCE, 2020, 36 (02) : 459 - 485
  • [2] Predicting defect-prone software modules using shifted-scaled Dirichlet distribution
    Alsuroji, Rua
    Bouguila, Nizar
    Zamzami, Nuha
    [J]. 2018 FIRST IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE FOR INDUSTRIES (AI4I 2018), 2018, : 15 - 18
  • [3] Probabilistic Modeling for Frequency Vectors Using a Flexible Shifted-Scaled Dirichlet Distribution Prior
    Zamzami, Nuha
    Bouguila, Nizar
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2020, 14 (06)
  • [4] Online Variational Learning of Shifted Scaled Dirichlet Mixture
    Manouchehri, Narges
    Dalhoumi, Oumayma
    Amayri, Manar
    Bouguila, Nizar
    [J]. PROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2021,
  • [5] Hierarchical Dirichlet and Pitman-Yor process mixtures of shifted-scaled Dirichlet distributions for proportional data modeling
    Baghdadi, Ali
    Manouchehri, Narges
    Patterson, Zachary
    Fan, Wentao
    Bouguila, Nizar
    [J]. COMPUTATIONAL INTELLIGENCE, 2022, 38 (06) : 2095 - 2115
  • [6] Variational learning of a shifted scaled Dirichlet model with component splitting approach
    Manouchehri, Narges
    Dalhoumi, Oumayma
    Amayri, Manar
    Bouguila, Nizar
    [J]. 2020 THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE FOR INDUSTRIES (AI4I 2020), 2020, : 75 - 78
  • [7] Unsupervised selection of a finite Dirichlet mixture model: An MML-based approach
    Bouguila, Nizar
    Ziou, Djemel
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2006, 18 (08) : 993 - 1009
  • [8] Finite mixture of varying coefficient model: Estimation and component selection
    Ye, Mao
    Lu, Zhao-Hua
    Li, Yimei
    Song, Xinyuan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 452 - 474
  • [9] Bayesian Learning of Shifted-Scaled Dirichlet Mixture Models and Its Application to Early COVID-19 Detection in Chest X-ray Images
    Bourouis, Sami
    Alharbi, Abdullah
    Bouguila, Nizar
    [J]. JOURNAL OF IMAGING, 2021, 7 (01)
  • [10] Estimation and Model Selection in Dirichlet Regression
    Camargo, Andre P.
    Stern, Julio M.
    Lauretto, Marcelo S.
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2012, 1443 : 206 - 213