Polyhydroxyalkanoate (PHA) Biosynthesis from Whey Lactose

被引:39
|
作者
Koller, Martin [1 ]
Atlic, Aid [1 ]
Gonzalez-Garcia, Yolanda [2 ]
Kutschera, Christoph [1 ]
Braunegg, Gerhart [1 ]
机构
[1] Graz Univ Technol, Inst Biotechnol & Biochem Engn, A-8010 Graz, Austria
[2] Univ Guadalajara, Dept Chem Engn, Guadalajara 44430, Jalisco, Mexico
关键词
biocompatibility; biopolymers; high-performance polymers; polyhydroxyalkanoates; whey;
D O I
10.1002/masy.200851212
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The potential of three different microbial wild type strains as polyhydroxyalkanoate (PHA) producers from whey lactose is compared. Homopolyester and co-polyester biosynthesis was investigated by the archaeon Haloferax mediterranei and the eubacterial strains Pseudomonas hydrogenovora and Hydrogenophaga pseudoflava. H. mediterranei accumulated 50 wt.-% of Poly-3-(hydroxybutyrate-co-6%-hydroxyvalerate) in cell dry mass from hydrolyzed whey without addition of 3-hydroxyvalerate (3HV) precursors (specific productivity q(p): 2.9 mg/g h). Using P. hydrogenovora, the final percentage of Poly-3-hydroxybutyrate (PHB) amounted to 12 Wt.-% (q(p): 0.03 g/g h); co-feeding of valeric acid resulted in the production of 12 wt.-%. P-3(HB-CO-21%-HV) (q(p): 0.02 g/g h). With H. pseudoflova, it was possible to reach 40 wt.-% P-3 (HB-CO-5%-HV) on not-hydrolyzed whey lactose plus valeric acid as 3HV precursor (q(p): 9.1 mg/g h); on hydrolyzed whey lactose without addition of valeric acid, the strain produced 30 wt.-% of PHB (q(p): 0.16 g/g h). The characterization of the isolated biopolyesters completes the study.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 50 条
  • [11] Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase
    Stubbe, J
    Tian, J
    [J]. NATURAL PRODUCT REPORTS, 2003, 20 (05) : 445 - 457
  • [12] PROTEIN AND LACTOSE FROM WHEY
    不详
    [J]. FOOD ENGINEERING, 1970, 42 (11): : 75 - +
  • [13] Polyhydroxyalkanoate (PHA): Properties and Modifications
    Sharma, Vibhuti
    Sehgal, Rutika
    Gupta, Reena
    [J]. POLYMER, 2021, 212
  • [14] Polyhydroxyalkanoate (PHA): Properties and Modifications
    Sharma, Vibhuti
    Sehgal, Rutika
    Gupta, Reena
    [J]. Gupta, Reena (reenagupta_2001@yahoo.com), 1600, Elsevier Ltd (212):
  • [15] In Vivo Characterization and Application of the PHA Synthase from Azotobacter vinelandii for the Biosynthesis of Polyhydroxyalkanoate Containing 4-Hydroxybutyrate
    Mok, Pei-Shze
    Chuah, Jo-Ann
    Najimudin, Nazalan
    Liew, Pauline-Woan-Ying
    Jong, Bor-Chyan
    Sudesh, Kumar
    [J]. POLYMERS, 2021, 13 (10)
  • [16] Microbial Biosynthesis of Medium-Chain-Length Polyhydroxyalkanoate (mcl-PHA) from Waste Cooking Oil
    Elazzazy, Ahmed M.
    Ali, Abd Khawater
    Bataweel, Noor M.
    Mahmoud, Maged M.
    Baghdadi, Afra M.
    [J]. POLYMERS, 2024, 16 (15)
  • [17] Role of Genetic Redundancy in Polyhydroxyalkanoate (PHA) Polymerases in PHA Biosynthesis in Rhodospirillum rubrum (vol 194, pg 5522, 2012)
    Jin, Huanan
    Nikolau, Basil J.
    [J]. JOURNAL OF BACTERIOLOGY, 2012, 194 (23) : 6699 - 6699
  • [18] Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora
    Koller, Martin
    Bona, Rodolfo
    Chiellini, Emo
    Fernandes, Elizabeth Grillo
    Horvat, Predrag
    Kutschera, Christoph
    Hesse, Paula
    Braunegg, Gerhart
    [J]. BIORESOURCE TECHNOLOGY, 2008, 99 (11) : 4854 - 4863
  • [19] LACTOSE PRODUCTION FROM DAIRY WHEY
    MADRIDVICENTE, A
    [J]. INDUSTRIE ALIMENTARI, 1979, 18 (11): : 811 - 816
  • [20] Recovery and purification of lactose from whey
    de Souza, Rosane Rosa
    Bergamasco, Rosangela
    da Costa, Silvio Claudio
    Feng, Xianshe
    Bernardo Faria, Sergio Henrique
    Gimenes, Marcelino Luiz
    [J]. CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2010, 49 (11) : 1137 - 1143