Perturbation of the Lyapunov spectra of periodic orbits

被引:21
|
作者
Bochi, J. [1 ]
Bonatti, C. [2 ]
机构
[1] PUC, Dept Matemat, BR-22453900 Rio De Janeiro, RJ, Brazil
[2] Univ Bourgogne, IMB, F-21078 Dijon, France
关键词
HYPERBOLICITY;
D O I
10.1112/plms/pdr048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe all Lyapunov spectra that can be obtained by perturbing the derivatives along periodic orbits of a diffeomorphism. The description is expressed in terms of the finest dominated splitting and Lyapunov exponents that appear in the limit of a sequence of periodic orbits, and involves the majorization partial order. Among the applications, we give a simple criterion for the occurrence of universal dynamics.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 50 条
  • [31] HAMILTONIAN PERTURBATION-THEORY - PERIODIC-ORBITS, RESONANCES AND INTERMITTENCY
    LOCHAK, P
    NONLINEARITY, 1993, 6 (06) : 885 - 904
  • [32] CONTINUATION OF PERIODIC ORBITS OF A THIRD ORDER OSCILLATOR UNDER AUTONOMOUS PERTURBATION
    Afsharnejad, Z.
    Golmakani, A.
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2006, 4 (02) : 191 - 197
  • [33] SEMICLASSICAL SPECTRA WITHOUT PERIODIC-ORBITS FOR A KICKED TOP
    GERWINSKI, P
    HAAKE, F
    WIEDEMANN, H
    KUS, M
    ZYCZKOWSKI, K
    PHYSICAL REVIEW LETTERS, 1995, 74 (09) : 1562 - 1565
  • [34] Inferring periodic orbits from spectra of simply shaped microlasers
    Lebental, M.
    Djellali, N.
    Arnaud, C.
    Lauret, J.-S.
    Zyss, J.
    Dubertrand, R.
    Schmit, C.
    Bogomolny, E.
    PHYSICAL REVIEW A, 2007, 76 (02):
  • [35] NATURE OF CLASSICAL PERIODIC-ORBITS FROM THE QUANTUM SPECTRA
    BISWAS, D
    AZAM, M
    LAWANDE, SV
    PHYSICAL REVIEW A, 1991, 44 (08): : 4911 - 4914
  • [36] Stabilizing Periodic Orbits of a Class of Mechanical Systems with Impulse Effects: A Lyapunov Constraint Approach
    Chaalal, Mohammed
    Achour, Noura
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (05) : 2213 - 2221
  • [37] Lyapunov-Schmidt reduction for unfolding heteroclinic networks of equilibria and periodic orbits with tangencies
    Rademacher, Jens D. M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (02) : 305 - 348
  • [38] Invariant manifolds of Lyapunov periodic orbits in the RCD solar sail problem with dipole secondary
    Gahlot, Pulkit
    Kishor, Ram
    NONLINEAR DYNAMICS, 2024, 112 (16) : 14143 - 14157
  • [39] Stabilizing periodic orbits of a class of mechanical systems with impulse effects: A Lyapunov constraint approach
    Mohammed Chaalal
    Noura Achour
    International Journal of Control, Automation and Systems, 2017, 15 : 2213 - 2221
  • [40] RANDOM PERTURBATION OF SYSTEMATIC DEGENERACIES AND THEIR FOURIER-TRANSFORMS AND PERIODIC-ORBITS
    HEISS, WD
    MULLER, M
    PHYSICAL REVIEW A, 1993, 48 (04): : 2558 - 2566