Perturbation of the Lyapunov spectra of periodic orbits

被引:21
|
作者
Bochi, J. [1 ]
Bonatti, C. [2 ]
机构
[1] PUC, Dept Matemat, BR-22453900 Rio De Janeiro, RJ, Brazil
[2] Univ Bourgogne, IMB, F-21078 Dijon, France
关键词
HYPERBOLICITY;
D O I
10.1112/plms/pdr048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe all Lyapunov spectra that can be obtained by perturbing the derivatives along periodic orbits of a diffeomorphism. The description is expressed in terms of the finest dominated splitting and Lyapunov exponents that appear in the limit of a sequence of periodic orbits, and involves the majorization partial order. Among the applications, we give a simple criterion for the occurrence of universal dynamics.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 50 条
  • [21] Lyapunov Spectra of Coulombic and Gravitational Periodic Systems
    Kumar, Pankaj
    Miller, Bruce N.
    ENTROPY, 2017, 19 (05)
  • [22] On resumming periodic orbits in the spectra of integrable systems
    de Almeida, AMO
    Lewenkopf, CH
    Tomsovic, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (49): : 10629 - 10642
  • [23] On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows
    Marc Fouchard
    Elena Lega
    Christiane Froeschlé
    Claude Froeschlé
    Celestial Mechanics and Dynamical Astronomy, 2002, 83 : 205 - 222
  • [24] Bridges between the generalized Sitnikov family and the Lyapunov family of periodic orbits
    Llibre, J
    Meyer, KR
    Soler, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (01) : 140 - 156
  • [25] On the relationship between fast Lyapunov indicator and periodic orbits for continuous flows
    Fouchard, M
    Lega, E
    Froeschlé, C
    Froeschlé, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2002, 83 (1-4): : 205 - 222
  • [26] on the relationship between fast lyapunov indicator and periodic orbits for symplectic mappings
    Elena Lega
    Claude Froeschlé
    Celestial Mechanics and Dynamical Astronomy, 2001, 81 : 129 - 147
  • [27] On the relationship between Fast Lyapunov Indicator and periodic orbits for symplectic mappings
    Lega, E
    Froeschlé, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 81 (1-2): : 129 - 147
  • [28] Action and index spectra and periodic orbits in Hamiltonian dynamics
    Ginzburg, Viktor L.
    Guerel, Basak Z.
    GEOMETRY & TOPOLOGY, 2009, 13 : 2745 - 2805
  • [29] Characterization of transition to chaos with multiple positive - Lyapunov exponents by unstable periodic orbits
    Davidchack, R
    Lai, YC
    PHYSICS LETTERS A, 2000, 270 (06) : 308 - 313
  • [30] Homoclinic orbits analysis of T chaotic system with periodic parametric perturbation
    Xi Xiao-Jian
    Wang Zhen
    Sun Wei
    ACTA PHYSICA SINICA, 2013, 62 (13)