Finite-size corrections for logarithmic representations in critical dense polymers

被引:9
|
作者
Izmailian, Nickolay Sh. [1 ,2 ,3 ]
Ruelle, Philippe [4 ]
Hu, Chin-Kun [1 ]
机构
[1] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[2] Yerevan Phys Inst, Yerevan 375036, Armenia
[3] Natl Taiwan Univ, Natl Ctr Theoret Sci, Div Phys, Taipei 10617, Taiwan
[4] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain, Belgium
关键词
UNIVERSAL SCALING FUNCTIONS; AMPLITUDE RATIOS; CENTRAL CHARGE; ISING-MODELS;
D O I
10.1016/j.physletb.2012.03.043
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study (analytic) finite-size corrections in the dense polymer model on the strip by perturbing the critical Hamiltonian with irrelevant operators belonging to the tower of the identity. We generalize the perturbation expansion to include Jordan cells, and examine whether the finite-size corrections are sensitive to the properties of indecomposable representations appearing in the conformal spectrum, in particular their indecomposability parameters. We find, at first order, that the corrections do not depend on these parameters nor even on the presence of Jordan cells. Though the corrections themselves are not universal, the ratios are universal and correctly reproduced by the conformal perturbative approach, to first order. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 75
页数:5
相关论文
共 50 条
  • [41] Screening and finite-size corrections to the octupole and Schiff moments
    Flambaum, V. V.
    Kozlov, A.
    [J]. PHYSICAL REVIEW C, 2012, 85 (06):
  • [42] Finite-size corrections at the hard edge for the Laguerre β ensemble
    Forrester, Peter J.
    Trinh, Allan K.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2019, 143 (03) : 315 - 336
  • [43] Finite-size corrections of an integrable chain with alternating spins
    Dorfel, BD
    Meissner, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (06): : 1831 - 1841
  • [44] Control of the finite-size corrections in exact diagonalization studies
    Gros, C
    [J]. PHYSICAL REVIEW B, 1996, 53 (11): : 6865 - 6868
  • [45] Finite-size corrections to the free energies of crystalline solids
    Polson, JM
    Trizac, E
    Pronk, S
    Frenkel, D
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (12): : 5339 - 5342
  • [46] Finite-size corrections in numerical simulation of liquid water
    Belloni, Luc
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (09):
  • [47] Fluctuation corrections to thermodynamic functions: Finite-size effects
    Sinha, Sudarson Sekhar
    Ghosh, Arnab
    Ray, Deb Shankar
    [J]. PHYSICAL REVIEW E, 2013, 87 (04):
  • [48] Universality of finite-size corrections to geometrical entanglement in one-dimensional quantum critical systems
    Xi-Jing Liu
    Bing-Quan Hu
    Sam Young Cho
    Huan-Qiang Zhou
    Qian-Qian Shi
    [J]. Journal of the Korean Physical Society, 2016, 69 : 1212 - 1218
  • [49] SYSTEMS WITH LOGARITHMIC SPECIFIC-HEAT - FINITE-SIZE SCALING
    PRIVMAN, V
    RUDNICK, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (18): : L1215 - L1219
  • [50] Universality of finite-size corrections to geometrical entanglement in one-dimensional quantum critical systems
    Liu, Xi-Jing
    Hu, Bing-Quan
    Cho, Sam Young
    Zhou, Huan-Qiang
    Shi, Qian-Qian
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2016, 69 (07) : 1212 - 1218