Finite-size corrections for logarithmic representations in critical dense polymers

被引:9
|
作者
Izmailian, Nickolay Sh. [1 ,2 ,3 ]
Ruelle, Philippe [4 ]
Hu, Chin-Kun [1 ]
机构
[1] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[2] Yerevan Phys Inst, Yerevan 375036, Armenia
[3] Natl Taiwan Univ, Natl Ctr Theoret Sci, Div Phys, Taipei 10617, Taiwan
[4] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain, Belgium
关键词
UNIVERSAL SCALING FUNCTIONS; AMPLITUDE RATIOS; CENTRAL CHARGE; ISING-MODELS;
D O I
10.1016/j.physletb.2012.03.043
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study (analytic) finite-size corrections in the dense polymer model on the strip by perturbing the critical Hamiltonian with irrelevant operators belonging to the tower of the identity. We generalize the perturbation expansion to include Jordan cells, and examine whether the finite-size corrections are sensitive to the properties of indecomposable representations appearing in the conformal spectrum, in particular their indecomposability parameters. We find, at first order, that the corrections do not depend on these parameters nor even on the presence of Jordan cells. Though the corrections themselves are not universal, the ratios are universal and correctly reproduced by the conformal perturbative approach, to first order. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 75
页数:5
相关论文
共 50 条
  • [1] LOGARITHMIC CORRECTIONS TO FINITE-SIZE SCALING IN STRIPS
    CARDY, JL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (17): : 1093 - 1098
  • [2] Finite-size effects for anisotropic bootstrap percolation: Logarithmic corrections
    van Enter, Aernout C. D.
    Hulshof, Tim
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (06) : 1383 - 1389
  • [3] Finite-Size Effects for Anisotropic Bootstrap Percolation: Logarithmic Corrections
    Aernout C. D. van Enter
    Tim Hulshof
    [J]. Journal of Statistical Physics, 2007, 128 : 1383 - 1389
  • [4] Finite-size corrections to entanglement in quantum critical systems
    Alcaraz, F. C.
    Sarandy, M. S.
    [J]. PHYSICAL REVIEW A, 2008, 78 (03):
  • [5] LOGARITHMIC FINITE-SIZE CORRECTIONS IN THE 3-DIMENSIONAL MEAN SPHERICAL MODEL
    BRANKOV, JG
    DANCHEV, DM
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (3-4) : 775 - 798
  • [6] FINITE-SIZE LOGARITHMIC CORRECTIONS IN THE FREE-ENERGY OF THE MEAN SPHERICAL MODEL
    BRANKOV, JG
    DANCHEV, DM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (18): : 4485 - 4496
  • [7] Logarithmic corrections to finite-size spectrum of SU(N) symmetric quantum chains
    Majumdar, K
    Mukherjee, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (38): : L543 - L549
  • [8] Geometry, thermodynamics, and finite-size corrections in the critical Potts model
    Hu, CK
    Chen, JA
    Izmailian, NS
    Kleban, P
    [J]. PHYSICAL REVIEW E, 1999, 60 (06) : 6491 - 6495
  • [9] Universality of finite-size corrections to the number of critical percolation clusters
    Ziff, RM
    Finch, SR
    Adamchik, VS
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (18) : 3447 - 3450
  • [10] Finite-size corrections in critical symmetry-resolved entanglement
    Estienne, Benoit
    Ikhlef, Yacine
    Morin-Duchesne, Alexi
    [J]. SCIPOST PHYSICS, 2021, 10 (03):