Universality of finite-size corrections to the number of critical percolation clusters

被引:64
|
作者
Ziff, RM
Finch, SR
Adamchik, VS
机构
[1] MATHSOFT INC, CAMBRIDGE, MA 02142 USA
[2] WOLFRAM RES INC, CHAMPAIGN, IL 61820 USA
关键词
D O I
10.1103/PhysRevLett.79.3447
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Monte Carlo simulations on a variety of finite 2D percolating systems at criticality suggest that the excess number of clusters over the bulk value n(c) is a universal quantity, dependent upon the system shape but independent of the lattice and percolation type. Values of n(c) are found to high accuracy, and for bond percolation are in accord with the theoretical predictions of Temperley and Lieb [Proc. R. Sec. London A 322, 251 (1971)], and Baxter, Temperley, and Ashley [Proc. R. Sec. London A 358, 535 (1978)], whose results we have evaluated explicitly in terms of simple algebraic numbers. Fluctuations are also studied.
引用
收藏
页码:3447 / 3450
页数:4
相关论文
共 50 条
  • [1] Universality in finite-size effects in percolation.
    Ziff, RM
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 456 - PHYS
  • [2] On the finite-size scaling of clusters in compact directed percolation
    Kearney, MJ
    Martin, RJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (24): : 6629 - 6633
  • [3] Finite-Size Effects for Anisotropic Bootstrap Percolation: Logarithmic Corrections
    Aernout C. D. van Enter
    Tim Hulshof
    [J]. Journal of Statistical Physics, 2007, 128 : 1383 - 1389
  • [4] Finite-size effects for anisotropic bootstrap percolation: Logarithmic corrections
    van Enter, Aernout C. D.
    Hulshof, Tim
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (06) : 1383 - 1389
  • [5] Finite-size corrections for universal boundary entropy in bond percolation
    de Gier, Jan
    Jacobsen, Jesper Lykke
    Ponsaing, Anita
    [J]. SCIPOST PHYSICS, 2016, 1 (02):
  • [6] Universality of finite-size corrections to geometrical entanglement in one-dimensional quantum critical systems
    Liu, Xi-Jing
    Hu, Bing-Quan
    Cho, Sam Young
    Zhou, Huan-Qiang
    Shi, Qian-Qian
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2016, 69 (07) : 1212 - 1218
  • [7] Universality of finite-size corrections to geometrical entanglement in one-dimensional quantum critical systems
    Xi-Jing Liu
    Bing-Quan Hu
    Sam Young Cho
    Huan-Qiang Zhou
    Qian-Qian Shi
    [J]. Journal of the Korean Physical Society, 2016, 69 : 1212 - 1218
  • [8] CRITICAL EXPONENT OF PERCOLATION CONDUCTIVITY BY FINITE-SIZE SCALING
    SAHIMI, M
    HUGHES, BD
    SCRIVEN, LE
    DAVIS, HT
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (16): : L521 - L527
  • [9] Percolation of randomly distributed growing clusters: Finite-size scaling and critical exponents for the square lattice
    Tsakiris, N.
    Maragakis, M.
    Kosmidis, K.
    Argyrakis, P.
    [J]. PHYSICAL REVIEW E, 2010, 82 (04)
  • [10] Finite-size corrections to entanglement in quantum critical systems
    Alcaraz, F. C.
    Sarandy, M. S.
    [J]. PHYSICAL REVIEW A, 2008, 78 (03):