Communicating with chaos using two-dimensional symbolic dynamics

被引:39
|
作者
Lai, YC [1 ]
Bollt, E
Grebogi, C
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] USN Acad, Dept Math, Annapolis, MD 21402 USA
[4] Univ Maryland, Inst Phys Sci & Technol, Dept Math, Inst Plasma Res, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(99)00175-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symbolic representations of controlled chaotic orbits produced by signal generators can be used for communicating. In this Letter, communicating with chaos is investigated by using more realistic dynamical systems described by two-dimensional invertible maps. The major difficulty is how to specify a generating partition so that a good symbolic dynamics can be defined. A solution is proposed whereby hyperbolic chaotic saddles embedded in the attractor are exploited for digital encoding. Issues addressed include the channel capacity and noise immunity when these saddles are utilized for communication. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [1] Communicating with chaos using two-dimensional symbolic dynamics
    Lai, Ying-Cheng
    Bollt, Erik
    Grebogi, Celso
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 255 (1-2): : 75 - 81
  • [2] SYMBOLIC DYNAMICS APPROACH TO THE TWO-DIMENSIONAL CHAOS IN AREA-PRESERVING MAPS - A FRACTAL GEOMETRICAL MODEL
    AIZAWA, Y
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (06): : 1419 - 1421
  • [3] Two-dimensional solvable chaos
    Sogo, Kiyoshi
    Masumizu, Atsushi
    [J]. PHYSICS LETTERS A, 2011, 375 (40) : 3512 - 3516
  • [4] Chaos in two-dimensional mappings
    Zhou, JY
    [J]. PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 919 - 927
  • [5] SYMBOLIC DYNAMICS FOR THE GEODESIC FLOW ON TWO-DIMENSIONAL HYPERBOLIC GOOD ORBIFOLDS
    Pohl, Anke D.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) : 2173 - 2241
  • [6] COMPUTATION OF SYMBOLIC DYNAMICS FOR TWO-DIMENSIONAL PIECEWISE-AFFINE MAPS
    Sella, Lorenzo
    Collins, Pieter
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (03): : 739 - 767
  • [7] Symbolic representation of two-dimensional shapes
    Guru, D. S.
    Nagendraswamy, H. S.
    [J]. PATTERN RECOGNITION LETTERS, 2007, 28 (01) : 144 - 155
  • [8] TWO RESULTS ON ENTROPY, CHAOS AND INDEPENDENCE IN SYMBOLIC DYNAMICS
    Falniowski, Fryderyk
    Kulczycki, Marcin
    Kwietniak, Dominik
    Li, Jian
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3487 - 3505
  • [9] Chaos in the Sense of Devaney for Two-Dimensional Time-Varying Generalized Symbolic Dynamical Systems
    Tian, Chuanjun
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (04):
  • [10] Adiabatic chaos in a two-dimensional mapping
    Vainshtein, DL
    Vasiliev, AA
    Neishtadt, AI
    [J]. CHAOS, 1996, 6 (04) : 514 - 518