Communicating with chaos using two-dimensional symbolic dynamics

被引:39
|
作者
Lai, YC [1 ]
Bollt, E
Grebogi, C
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] USN Acad, Dept Math, Annapolis, MD 21402 USA
[4] Univ Maryland, Inst Phys Sci & Technol, Dept Math, Inst Plasma Res, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(99)00175-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symbolic representations of controlled chaotic orbits produced by signal generators can be used for communicating. In this Letter, communicating with chaos is investigated by using more realistic dynamical systems described by two-dimensional invertible maps. The major difficulty is how to specify a generating partition so that a good symbolic dynamics can be defined. A solution is proposed whereby hyperbolic chaotic saddles embedded in the attractor are exploited for digital encoding. Issues addressed include the channel capacity and noise immunity when these saddles are utilized for communication. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [21] Two-dimensional dissipative maps at chaos threshold: sensitivity to initial conditions and relaxation dynamics
    Borges, EP
    Tirnakli, U
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) : 227 - 233
  • [22] CHAOS-ORDER-CHAOS TRANSITIONS IN A TWO-DIMENSIONAL HAMILTONIAN SYSTEM
    DENG, Z
    HIOE, FT
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (15) : 1539 - 1542
  • [23] DYNAMICS OF TWO-DIMENSIONAL MELTING
    ZIPPELIUS, A
    HALPERIN, BI
    NELSON, DR
    [J]. PHYSICAL REVIEW B, 1980, 22 (05): : 2514 - 2541
  • [24] Dynamics of two-dimensional bubbles
    Piedra, Saul
    Ramos, Eduardo
    Ramon Herrera, J.
    [J]. PHYSICAL REVIEW E, 2015, 91 (06):
  • [25] ALGORITHMS FOR OPTIMIZING, TWO-DIMENSIONAL SYMBOLIC LAYOUT COMPACTION
    WOLF, WH
    MATHEWS, RG
    NEWKIRK, JA
    DUTTON, RW
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1988, 7 (04) : 451 - 466
  • [26] Enhanced Differential Chaos Shift Keying using symbolic dynamics
    Maggio, GM
    Galias, Z
    [J]. GLOBECOM '01: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6, 2001, : 1157 - 1161
  • [27] Geometric interpretation of chaos in two-dimensional Hamiltonian systems
    Univ of Florida, Gainesville, United States
    [J]. Phys Rev E., 1600, 3 -A pt A (2722-2732):
  • [28] Geometric interpretation of chaos in two-dimensional Hamiltonian systems
    Kandrup, HE
    [J]. PHYSICAL REVIEW E, 1997, 56 (03): : 2722 - 2732
  • [29] Singularity confinement and chaos in two-dimensional discrete systems
    Kanki, Masataka
    Mase, Takafumi
    Tokihiro, Tetsuji
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (23)
  • [30] Route to chaos for a two-dimensional externally driven flow
    Braun, R
    Feudel, F
    Guzdar, P
    [J]. PHYSICAL REVIEW E, 1998, 58 (02): : 1927 - 1932