Probabilistic Ranking of Documents Using Vectors in Information Retrieval

被引:0
|
作者
Saini, Balwinder [1 ]
Singh, Vikram [1 ]
机构
[1] NIT Kurukshetra, Dept Comp Engn, Chandigarh, Haryana, India
关键词
Information retrieval (IR); Ranking/indexing; Tokenization; Clustering;
D O I
10.1007/978-81-322-2205-7_57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
On the web, electronic form of information is increasing exponentially with the passage of past few years. Also, this advancement creates its own uncertainties. The overload information result is progressive while finding the relevant data with a chance of HIT or Miss Exposure. For improving this, Information Retrieval Ranking, Tokenization and Clustering techniques are suggestive as probable solutions. In this paper, Probabilistic Ranking using Vectors (PRUV) algorithm is proposed, in which tokenization and Clustering of a given documents are used to create more precisely and efficient rank gratify user's information need to execute sharply reduced search, is believed to be a part of IR. Tokenization involves pre-processing of the given documents and generates its respective tokens and then based on probability score cluster are created. Performance of some of existing clustering techniques (K-Means and DB-Scan) is compared with proposed algorithm PRUV, using various parameters, e.g. Time, Accuracy and Number of Tokens Generated.
引用
收藏
页码:613 / 624
页数:12
相关论文
共 50 条
  • [21] Efficient Ranking Framework for Information Retrieval Using Similarity Measure
    Irfan, Shadab
    Ghosh, Subhajit
    [J]. COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1344 - 1354
  • [22] Semantics based information retrieval using conceptual indexing of documents
    Manjula, D
    Kulandaiyan, S
    Sudarshan, S
    Francis, A
    Geetha, TV
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 685 - 692
  • [23] A Probabilistic Topic-Based Ranking Framework for Location-Sensitive Domain Information Retrieval
    Li, Huajing
    Li, Zhisheng
    Lee, Wang-Chien
    Lee, Dik Lun
    [J]. PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2009, : 331 - 338
  • [24] Artificial Intelligent Information Retrieval Using Assigning Context of Documents
    Liu Yong-Min
    Cheng Shu
    [J]. NSWCTC 2009: INTERNATIONAL CONFERENCE ON NETWORKS SECURITY, WIRELESS COMMUNICATIONS AND TRUSTED COMPUTING, VOL 2, PROCEEDINGS, 2009, : 592 - +
  • [25] A Probabilistic logic for information retrieval
    van Rijsbergen, CJ
    [J]. ADVANCES IN INFORMATION RETRIEVAL, 2005, 3408 : 1 - 6
  • [26] Automatic Ranking of Information Retrieval Systems
    Hasanain, Maram
    [J]. WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 749 - 750
  • [27] Information retrieval in folksonomies:: Search and ranking
    Hotho, Andreas
    Jaeschke, Robert
    Schmitz, Christoph
    Stumme, Christoph
    [J]. SEMANTIC WEB: RESEARCH AND APPLICATIONS, PROCEEDINGS, 2006, 4011 : 411 - 426
  • [28] Predicting Data Space Retrieval Using Probabilistic Hidden Information
    Tchuissang, Gile Narcisse Fanzou
    Wang, Ning
    Kuicheu, Nathalie Cindy
    Siewe, Francois
    Xu, De
    Liu, Shuoyan
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (07) : 1991 - 1994
  • [29] An adaptive information retrieval system using a probabilistic user model
    Saito, K
    Shioya, H
    Da-te, T
    [J]. COMPUTING ANTICIPATORY SYSTEMS, 2001, 573 : 694 - 703
  • [30] CRTER: Using Cross Terms to Enhance Probabilistic Information Retrieval
    Zhao, Jiashu
    Huang, Jimmy Xiangji
    He, Ben
    [J]. PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 155 - 164