Rectifying no-hair theorems in Gauss-Bonnet theory

被引:6
|
作者
Papageorgiou, Alexandros [1 ]
Park, Chan [1 ]
Park, Miok [1 ]
机构
[1] Inst for Basic Sci Korea, Ctr Theoret Phys Univ, Daejeon 34126, South Korea
关键词
BLACK-HOLES; EVENT HORIZONS; BARYON NUMBER; GRAVITY;
D O I
10.1103/PhysRevD.106.084024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We revisit the no-hair theorems in Einstein-Scalar-Gauss-Bonnet theory with a general coupling function between the scalar and the Gauss-Bonnet term in four dimensional spacetime. We first resolve the conflict caused from the incomplete derivation of the old no-hair theorem by taking into account the surface term and restore its reliability. We also clarify that the novel no-hair theorem is always evaded for regular black hole solutions without any restrictions as long as the regularity conditions are satisfied.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Gauss-Bonnet inflation
    Kanti, Panagiota
    Gannouji, Radouane
    Dadhich, Naresh
    [J]. PHYSICAL REVIEW D, 2015, 92 (04):
  • [12] Note on Gauss-Bonnet
    Gottlieb, DH
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (01): : 35 - 35
  • [13] ON GAUSS-BONNET THEOREM
    Jaric, Jovo
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2012, 91 (105): : 59 - 62
  • [14] THE GAUSS-BONNET THEOREM
    Raghunathan, M. S.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (06): : 893 - 900
  • [15] Formation of scalar hair on Gauss-Bonnet solitons and black holes
    Brihaye, Yves
    Hartmann, Betti
    Tojiev, Sardor
    [J]. PHYSICAL REVIEW D, 2013, 87 (02):
  • [16] On Gauss-Bonnet Curvatures
    Labbi, Mohammed Larbi
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [17] The Gauss-Bonnet theorem
    M. S. Raghunathan
    [J]. Indian Journal of Pure and Applied Mathematics, 2015, 46 : 893 - 900
  • [18] Meronic AdS black holes in Gauss-Bonnet theory
    Flores-Alfonso, Daniel
    Larios, Bryan O.
    [J]. PHYSICAL REVIEW D, 2020, 102 (06):
  • [19] Amplitudes and 4D Gauss-Bonnet theory
    Bonifacio, James
    Hinterbichler, Kurt
    Johnson, Laura A.
    [J]. PHYSICAL REVIEW D, 2020, 102 (02):
  • [20] Gauss-Bonnet theorems in the generalized affine group and the generalized BCV spaces
    Wu, Tong
    Wang, Yong
    [J]. AIMS MATHEMATICS, 2021, 6 (11): : 11655 - 11685