On Gauss-Bonnet Curvatures

被引:0
|
作者
Labbi, Mohammed Larbi [1 ]
机构
[1] Univ Bahrain, Coll Sci, Dept Math, Isa Town 32038, Bahrain
关键词
Gauss-Bonnet curvatures; Gauss-Bonnet gravity; lovelock gravity; generalized Einstein metrics; generalized minimal submanifolds; generalized Yamabe problem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The (2k)-th Gauss-Bonnet curvature is a generalization to higher dimensions of the (2k)-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for k = 1. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Variational properties of the Gauss-Bonnet curvatures
    Labbi, M. -L.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 32 (02) : 175 - 189
  • [2] CURVATURES AND GAUSS-BONNET THEOREM IN NEW MINIMAL SUPERGRAVITY
    FERRARA, S
    SABHARWAL, S
    VILLASANTE, M
    [J]. PHYSICS LETTERS B, 1988, 205 (2-3) : 302 - 305
  • [3] POSITIVE SECTIONAL CURVATURES DOES NOT IMPLY POSITIVE GAUSS-BONNET INTEGRAND
    GEROCH, R
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 54 (JAN) : 267 - 270
  • [4] Gauss-Bonnet inflation
    Kanti, Panagiota
    Gannouji, Radouane
    Dadhich, Naresh
    [J]. PHYSICAL REVIEW D, 2015, 92 (04):
  • [5] Note on Gauss-Bonnet
    Gottlieb, DH
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (01): : 35 - 35
  • [6] ON GAUSS-BONNET THEOREM
    Jaric, Jovo
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2012, 91 (105): : 59 - 62
  • [7] THE GAUSS-BONNET THEOREM
    Raghunathan, M. S.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (06): : 893 - 900
  • [8] The Gauss-Bonnet theorem
    M. S. Raghunathan
    [J]. Indian Journal of Pure and Applied Mathematics, 2015, 46 : 893 - 900
  • [9] Gauss-Bonnet holographic superconductors
    Barclay, Luke
    Gregory, Ruth
    Kanno, Sugumi
    Sutcliffe, Paul
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (12):
  • [10] Motivic Gauss-Bonnet formulas
    Levine, Marc
    Raksit, Arpon
    [J]. ALGEBRA & NUMBER THEORY, 2020, 14 (07) : 1801 - 1851