RNA secondary structure prediction using conditional random fields model

被引:1
|
作者
Subpaiboonkit, Sitthichoke [1 ,2 ]
Thammarongtham, Chinae [3 ]
Cutler, Robert W.
Chaijaruwanich, Jeerayut [1 ,2 ]
机构
[1] Chiang Mai Univ, Dept Comp Sci, Fac Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Bioinformat Res Lab, Chiang Mai 50200, Thailand
[3] Natl Ctr Genet Engn & Biotechnol, Biochem Engn & Pilot Plant Res & Dev Unit, Bangkok 10150, Thailand
关键词
RNA secondary structure prediction; ncRNA; Non-Coding RNA; CRFs; conditional random fields; bioinformatics; machine learning; data mining; CONTEXT-FREE GRAMMARS;
D O I
10.1504/IJDMB.2013.053195
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-coding RNAs (ncRNAs) have important biological functions in living cells dependent on their conserved secondary structures. Here, we focus on computational RNA secondary structure prediction by exploring primary sequences and complementary base pair interactions using the Conditional Random Fields (CRFs) model, which treats RNA prediction as a sequence labelling problem. Proposing suitable feature extraction from known RNA secondary structures, we developed a feature extraction based on natural RNA's loop and stem characteristics. Our CRFs models can predict the secondary structures of the test RNAs with optimal F-score prediction between 56.61 and 98.20% for different RNA families.
引用
收藏
页码:118 / 134
页数:17
相关论文
共 50 条
  • [31] CONDITIONAL RANDOM FIELDS FOR THE PREDICTION OF SIGNAL PEPTIDE CLEAVAGE SITES
    Mak, Man-Wai
    Kung, Sun-Yuan
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1605 - +
  • [32] Scene Categorization Using Topic Model Based Hierarchical Conditional Random Fields
    Garg, Vikram
    Hassan, Ehtesham
    Chaudhury, Santanu
    Gopal, M.
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, 2011, 6744 : 206 - 212
  • [33] Using RNase H to improve RNA secondary structure prediction
    Campagna, Ryan J.
    Bartels, Chantal B.
    Kauffmann, Andrew D.
    Childs-Disney, Jessica L.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [34] Prediction of RNA secondary structure with pseudoknots using integer programming
    Poolsap, Unyanee
    Kato, Yuki
    Akutsu, Tatsuya
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [35] RNA secondary structure prediction using highly parallel computers
    Nakaya, A
    Yamamoto, K
    Yonezawa, A
    [J]. COMPUTER APPLICATIONS IN THE BIOSCIENCES, 1995, 11 (06): : 685 - 692
  • [36] Pseudoknots Prediction on RNA Secondary Structure Using Term Rewriting
    Chowdhury, Linkon
    Khan, Mohammad Ibrahim
    [J]. BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2015), PT I, 2015, 9043 : 577 - 588
  • [37] Prediction of RNA Secondary Structure Using Butterfly Optimization Algorithm
    Sajib Chatterjee
    Rameswar Debnath
    Sujit Biswas
    Anupam Kumar Bairagi
    [J]. Human-Centric Intelligent Systems, 2024, 4 (2): : 220 - 240
  • [38] Prediction of RNA secondary structure with pseudoknots using integer programming
    Unyanee Poolsap
    Yuki Kato
    Tatsuya Akutsu
    [J]. BMC Bioinformatics, 10
  • [39] Prediction of RNA secondary structure using generalized centroid estimators
    Hamada, Michiaki
    Kiryu, Hisanori
    Sato, Kengo
    Mituyama, Toutai
    Asai, Kiyoshi
    [J]. BIOINFORMATICS, 2009, 25 (04) : 465 - 473
  • [40] The prediction of RNA secondary structure using multiple unaligned sequences
    Fang, Xiaoyong
    Luo, Zhigang
    Yuan, Bo
    [J]. ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2007, : 367 - +