Scene Categorization Using Topic Model Based Hierarchical Conditional Random Fields

被引:0
|
作者
Garg, Vikram [1 ]
Hassan, Ehtesham [1 ]
Chaudhury, Santanu [1 ]
Gopal, M. [1 ]
机构
[1] IIT Delhi, Dept Elect Engn, Delhi, India
关键词
Scene categorization; Latent dirichlet allocation; Conditional random fields;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel hierarchical framework for scene categorization. The scene representation is defined by latent topics extracted by Latent Dirichlet Allocation. The interaction of these topics across scene categories is learned by probabilistic graphical modelling. We use Conditional Random Fields in a hierarchical setting for discovering the global context of these topics. The learned random fields are further used for categorization of a new scene. The experimental results of the proposed framework is presented on standard datasets and on image collection obtained from the internet.
引用
收藏
页码:206 / 212
页数:7
相关论文
共 50 条
  • [1] Embedding Topic Discovery in Conditional Random Fields Model for Segmenting Nuclei Using Multispectral Data
    Wu, Xuqing
    Amrikachi, Mojgan
    Shah, Shishir K.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (06) : 1539 - 1549
  • [2] Scene and place recognition using a hierarchical latent topic model
    Yang, Jinfu
    Zhang, Shanshan
    Wang, Guanghui
    Li, Mingai
    [J]. NEUROCOMPUTING, 2015, 148 : 578 - 586
  • [3] Hierarchical Conditional Random Fields Model for Semisupervised SAR Image Segmentation
    Zhang, Peng
    Li, Ming
    Wu, Yan
    Li, Hejing
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (09): : 4933 - 4951
  • [4] A Random Categorization Model for Hierarchical Taxonomies
    Guido D’Amico
    Raul Rabadan
    Matthew Kleban
    [J]. Scientific Reports, 7
  • [5] A Random Categorization Model for Hierarchical Taxonomies
    D'Amico, Guido
    Rabadan, Raul
    Kleban, Matthew
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [6] Learning to parse hierarchical lists and outlines using conditional random fields
    Ye, M
    Viola, P
    [J]. NINTH INTERNATIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION, PROCEEDINGS, 2004, : 154 - 159
  • [7] Hierarchical conditional random fields for GPS-Based activity recognition
    Liao, Lin
    Fox, Dieter
    Kautz, Henry
    [J]. ROBOTICS RESEARCH, 2007, 28 : 487 - +
  • [8] Image Segmentation Based on Semantic Knowledge and Hierarchical Conditional Random Fields
    Qin, Cao
    Zhang, Yunzhou
    Hu, Meiyu
    Chu, Hao
    Wang, Lei
    [J]. PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT I, 2018, 11256 : 213 - 225
  • [9] MULTI-MODAL TOPIC UNIT SEGMENTATION IN VIDEOS USING CONDITIONAL RANDOM FIELDS
    Xu, Su
    Feng, Bailan
    Xu, Bo
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2287 - 2291
  • [10] Context-Aware Activity Modeling Using Hierarchical Conditional Random Fields
    Zhu, Yingying
    Nayak, Nandita M.
    Roy-Chowdhury, Amit K.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (07) : 1360 - 1372