Contact force estimation for terminal traction human-machine interaction based on sEMG

被引:0
|
作者
Lyu, Hang [1 ,2 ,3 ,4 ]
Lin, Gao [1 ,3 ,4 ]
Zhang, Dao-Hui [1 ,3 ,4 ]
Zhao, Xin-Gang [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
[4] Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
sEMG; Feature Extraction; Muscle Synergy; LSTM; Force Estimation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, starting from the interaction force when the human body performs terminal traction, by comparing and selecting the most suitable sEMG features for upper limb terminal force estimation, and using muscle synergistic extraction to solve the problem of the multi-degree-of-freedom control mechanism of the upper limb, the long short-term memory neural network model (LSTM) is finally used to establish the contact force estimation model of the upper limb end. The root mean square errors of NMF-LSTM method in x, y and z directions are 6.40 +/- 0.39N, 5.14 +/- 0.34N and 3.49 +/- 0.20N respectively. The average correlation coefficients in x, y and z directions are 0.93, 0.95 and 0.75 respectively, which is better than the results of PCA-LSTM, MLP and DT models.
引用
收藏
页码:7252 / 7257
页数:6
相关论文
共 50 条
  • [41] MEMS based Human-Machine Interaction System for Virtual Touring
    Xu, Xun
    Liu, Yusheng
    [J]. 2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, : 2159 - 2163
  • [42] Vector analysis of problem spaces based on human-machine interaction
    [J]. Meng, Shimin, 1600, Bentham Science Publishers B.V., P.O. Box 294, Bussum, 1400 AG, Netherlands (06):
  • [43] Gesture-based Human-Machine Interaction For Assistance Systems
    Kopinski, Thomas
    Geisler, Stefan
    Handmann, Uwe
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 510 - 517
  • [44] Video-based Respiratory Waveform Estimation in Dialogue: A Novel Task and Dataset for Human-Machine Interaction
    Obi, Takao
    Funakoshi, Kotaro
    [J]. PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, ICMI 2023, 2023, : 649 - 660
  • [45] Control of Force Impulse in Human-Machine Impact
    De Benedictis, Carlo
    Franco, Walter
    Maffiodo, Daniela
    Ferraresi, Carlo
    [J]. ADVANCES IN SERVICE AND INDUSTRIAL ROBOTICS, 2018, 49 : 956 - 964
  • [46] sEMG-based Estimation of Human Arm Force using Regression Model
    Wang, Chenliang
    Jiang, Li
    Guo, Chuangqiang
    Huang, Qi
    Yang, Bin
    Liu, Hong
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 1044 - 1049
  • [47] Design of Virtual Machine Processing & Human-Machine Interaction
    Li Qiang
    Zhang Qiang
    [J]. 2011 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED INDUSTRIAL DESIGN & CONCEPTUAL DESIGN, VOLS 1 AND 2: NEW ENGINES FOR INDUSTRIAL DESIGN: INTELLIGENCE - INTERACTION - SERVICES, 2011, : 650 - 652
  • [48] ESTIMATION OF RELATIVELY COMMANDED FORCE FROM EMG AND ITS APPLICATION TO HUMAN-MACHINE INTERFACES
    Watanabe, Masato
    Yamamoto, Yasuhiro
    Nakakoji, Kumiyo
    Kambara, Hiroyuki
    Koike, Yasuharu
    [J]. XIX IMEKO WORLD CONGRESS: FUNDAMENTAL AND APPLIED METROLOGY, PROCEEDINGS, 2009, : 2168 - 2171
  • [49] Frequency-encoded eye tracking smart contact lens for human-machine interaction
    Zhu, Hengtian
    Yang, Huan
    Xu, Siqi
    Ma, Yuanyuan
    Zhu, Shugeng
    Mao, Zhengyi
    Chen, Weiwei
    Hu, Zizhong
    Pan, Rongrong
    Xu, Yurui
    Xiong, Yifeng
    Chen, Ye
    Lu, Yanqing
    Ning, Xinghai
    Jiang, Dechen
    Yuan, Songtao
    Xu, Fei
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [50] The Blade Runner Scene. How Human-Machine Contact Incarnates Social Interaction
    Alejandro Medina-Aguilar, Gabriel
    [J]. ADVANCES IN SOFT COMPUTING, MICAI 2019, 2019, 11835 : 486 - 492