Contact force estimation for terminal traction human-machine interaction based on sEMG

被引:0
|
作者
Lyu, Hang [1 ,2 ,3 ,4 ]
Lin, Gao [1 ,3 ,4 ]
Zhang, Dao-Hui [1 ,3 ,4 ]
Zhao, Xin-Gang [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
[4] Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
sEMG; Feature Extraction; Muscle Synergy; LSTM; Force Estimation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, starting from the interaction force when the human body performs terminal traction, by comparing and selecting the most suitable sEMG features for upper limb terminal force estimation, and using muscle synergistic extraction to solve the problem of the multi-degree-of-freedom control mechanism of the upper limb, the long short-term memory neural network model (LSTM) is finally used to establish the contact force estimation model of the upper limb end. The root mean square errors of NMF-LSTM method in x, y and z directions are 6.40 +/- 0.39N, 5.14 +/- 0.34N and 3.49 +/- 0.20N respectively. The average correlation coefficients in x, y and z directions are 0.93, 0.95 and 0.75 respectively, which is better than the results of PCA-LSTM, MLP and DT models.
引用
收藏
页码:7252 / 7257
页数:6
相关论文
共 50 条
  • [31] The concept of "interaction" in debates on human-machine interaction
    Schleidgen, Sebastian
    Friedrich, Orsolya
    Gerlek, Selin
    Assadi, Galia
    Seifert, Johanna
    [J]. HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS, 2023, 10 (01):
  • [32] Human-Machine Interaction Technology for Simultaneous Gesture Recognition and Force Assessment: A Review
    Lu Zongxing
    He Baizheng
    Cai Yingjie
    Chen Bingxing
    Yao Ligang
    Huang Haibin
    Liu Zhoujie
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (22) : 26981 - 26996
  • [33] KNOWLEDGE REPRESENTATION FOR HUMAN-MACHINE INTERACTION
    Koit, Mare
    Roosmaa, Tiit
    Oim, Haldur
    [J]. KEOD 2009: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE ENGINEERING AND ONTOLOGY DEVELOPMENT, 2009, : 396 - +
  • [34] GAMIFICATION AND HUMAN-MACHINE INTERACTION: A SYNTHESIS
    Marache-Francisco, Cathie
    Brangier, Eric
    [J]. TRAVAIL HUMAIN, 2015, 78 (02): : 165 - 189
  • [35] Cognitive load and human-machine interaction
    Canes, Jose
    Di Stasi, Leandro
    Antoli, Adoracion
    Alvarez, Vanessa
    Madrid, Rafael, I
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 762 - 762
  • [36] Problems in human-machine interaction and communication
    Bannon, LJ
    [J]. DESIGN OF COMPUTING SYSTEMS: SOCIAL AND ERGONOMIC CONSIDERATIONS, 1997, 21 : 47 - 50
  • [37] Artificial sociality in the human-machine interaction
    Komarova, V
    Lonska, J.
    Tumalavicius, V
    Krasko, A.
    [J]. RUDN JOURNAL OF SOCIOLOGY-VESTNIK ROSSIISKOGO UNIVERSITETA DRUZHBY NARODOV SERIYA SOTSIOLOGIYA, 2021, 21 (02): : 377 - 390
  • [38] Sensing good human-machine interaction
    不详
    [J]. IIE SOLUTIONS, 2000, 32 (12): : 10 - 10
  • [39] An Intelligent Interaction Framework for Teleoperation Based on Human-Machine Cooperation
    Du, Guanglong
    Deng, Yongda
    Ng, Wing W. Y.
    Li, Di
    [J]. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2022, 52 (05) : 963 - 972
  • [40] Towards Personality-based Assistance in Human-Machine Interaction
    Dang, Thi-Hai-Ha
    Tapus, Adriana
    [J]. 2014 23RD IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (IEEE RO-MAN), 2014, : 1018 - 1023