Leibnizian Identity and Paraconsistent Logic

被引:0
|
作者
Abasnezhad, Ali [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Munich Ctr Math Philosophy, Munich, Germany
关键词
D O I
10.1080/01445340.2020.1773213
中图分类号
B82 [伦理学(道德学)];
学科分类号
摘要
The standard Leibnizian view of identity allows for substitutivity of identicals and validates transitivity of identity within classical semantics. However, in a series of works, Graham Priest argues that Leibnizian identity invalidates both principles when formalized in paraconsistent semantics. This paper aims to show the Leibnizian view of identity validates substitutivity of identicals and transitivity of identity whether the logic is classical or paraconsistent. After presenting Priest's semantics of identity, I show what a semantic expression of Leibnizian identity does amount to. Then, I argue that Priest's semantic definition of identity is not Leibnizian. Finally, I offer a semantics characterization of identity in paraconsistent logic that is truly Leibnizian. I demonstrate that the correct formalization of Leibnizian identity in paraconsistent logic also validates substitutivity of identicals and transitivity of identity.
引用
收藏
页码:236 / 243
页数:8
相关论文
共 50 条
  • [31] Paraconsistent ideas in quantum logic
    Maria Luisa Dalla Chiara
    Roberto Giuntini
    [J]. Synthese, 2000, 125 : 55 - 68
  • [32] Real Analysis in Paraconsistent Logic
    McKubre-Jordens, Maarten
    Weber, Zach
    [J]. JOURNAL OF PHILOSOPHICAL LOGIC, 2012, 41 (05) : 901 - 922
  • [33] Paraconsistent Computation Tree Logic
    Ken Kaneiwa
    Norihiro Kamide
    [J]. New Generation Computing, 2011, 29 (4) : 391 - 408
  • [34] The Paraconsistent Logic of Quantum Superpositions
    N. da Costa
    C. de Ronde
    [J]. Foundations of Physics, 2013, 43 : 845 - 858
  • [35] Frontiers of paraconsistent logic.
    Asenjo, FG
    [J]. HISTORY AND PHILOSOPHY OF LOGIC, 2000, 21 (03) : 245 - 247
  • [36] Symmetric Paraconsistent Quantum Logic
    Kamide, Norihiro
    [J]. 2021 IEEE 51ST INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2021), 2021, : 26 - 32
  • [37] Many valued paraconsistent logic
    Morgan, CG
    [J]. 31ST INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2001, : 267 - 272
  • [38] A Logic for Paraconsistent Transition Systems
    Cruz, Ana
    Madeira, Alexandre
    Barbosa, Luis Soares
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2022, (358): : 270 - 284
  • [39] Modal Objection to Naive Leibnizian Identity
    Jacquette, Dale
    [J]. HISTORY AND PHILOSOPHY OF LOGIC, 2011, 32 (02) : 107 - 118
  • [40] Is Leibnizian Calculus Embeddable in First Order Logic?
    Piotr Błaszczyk
    Vladimir Kanovei
    Karin U. Katz
    Mikhail G. Katz
    Taras Kudryk
    Thomas Mormann
    David Sherry
    [J]. Foundations of Science, 2017, 22 : 717 - 731