Leibnizian Identity and Paraconsistent Logic

被引:0
|
作者
Abasnezhad, Ali [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Munich Ctr Math Philosophy, Munich, Germany
关键词
D O I
10.1080/01445340.2020.1773213
中图分类号
B82 [伦理学(道德学)];
学科分类号
摘要
The standard Leibnizian view of identity allows for substitutivity of identicals and validates transitivity of identity within classical semantics. However, in a series of works, Graham Priest argues that Leibnizian identity invalidates both principles when formalized in paraconsistent semantics. This paper aims to show the Leibnizian view of identity validates substitutivity of identicals and transitivity of identity whether the logic is classical or paraconsistent. After presenting Priest's semantics of identity, I show what a semantic expression of Leibnizian identity does amount to. Then, I argue that Priest's semantic definition of identity is not Leibnizian. Finally, I offer a semantics characterization of identity in paraconsistent logic that is truly Leibnizian. I demonstrate that the correct formalization of Leibnizian identity in paraconsistent logic also validates substitutivity of identicals and transitivity of identity.
引用
收藏
页码:236 / 243
页数:8
相关论文
共 50 条
  • [21] On the Paraconsistent Logic CG′3
    Perez-Gaspar, Miguel
    Borja Macias, Veronica
    Barcenas, Everardo
    [J]. COMPUTACION Y SISTEMAS, 2021, 25 (02): : 435 - 445
  • [22] Paraconsistent Godel Modal Logic
    Bilkova, Marta
    Frittella, Sabine
    Kozhemiachenko, Daniil
    [J]. AUTOMATED REASONING, IJCAR 2022, 2022, 13385 : 429 - 448
  • [23] Paraconsistent Computation Tree Logic
    Kaneiwa, Ken
    Kamide, Norihiro
    [J]. NEW GENERATION COMPUTING, 2011, 29 (04) : 391 - 408
  • [24] Categorical consequence for paraconsistent logic
    Johnson, F
    Woodruff, PW
    [J]. PARACONSISTENCY: THE LOGICAL WAY TO THE INCONSISTENT, 2002, 228 : 141 - 150
  • [25] The Paraconsistent Logic of Quantum Superpositions
    da Costa, N.
    de Ronde, C.
    [J]. FOUNDATIONS OF PHYSICS, 2013, 43 (07) : 845 - 858
  • [26] Paraconsistent Logic, Evidence, and Justification
    Melvin Fitting
    [J]. Studia Logica, 2017, 105 : 1149 - 1166
  • [27] Real Analysis in Paraconsistent Logic
    Maarten McKubre-Jordens
    Zach Weber
    [J]. Journal of Philosophical Logic, 2012, 41 : 901 - 922
  • [28] Cognitive agents and paraconsistent logic
    Angelotti, ES
    Scalabrin, EE
    [J]. ADVANCED DISTRUBUTED SYSTEMS, 2004, 3061 : 91 - 104
  • [29] Combining Paraconsistent Logic with Argumentation
    Grooters, Diana
    Prakken, Henry
    [J]. COMPUTATIONAL MODELS OF ARGUMENT, 2014, 266 : 301 - 312
  • [30] Paraconsistent Logic, Evidence, and Justification
    Fitting, Melvin
    [J]. STUDIA LOGICA, 2017, 105 (06) : 1149 - 1166