Brain Image Registration Techniques using Wang Landau Adaptive Monte Carlo Approach

被引:0
|
作者
Sasikala, D. [1 ]
Neelaveni, R. [2 ]
机构
[1] Bannari Amman Inst Technol, Sathyamangalam 638401, India
[2] PSG Coll Technol, Coimbatore 641004, Tamil Nadu, India
来源
关键词
Wang Landau Adaptive Monte Carlo Approach (WLAMC); Medical image registration; Adaptive Monte Carlo Approach (AMC); Mutual Information (MI); Correlation Coefficient; Computed Time of Registration (CTR); EFFICIENT;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper discusses the application of Wang Landau Adaptive Monte Carlo Approach algorithm for registration of monomodal brain images. CT or / and MRI brain images are considered for the study. Wang Landau Adaptive Monte Carlo is compared with Adaptive Monte Carlo method. In medical image registration of brain images, Wang Landau Adaptive Monte Carlo is more reliable than Adaptive Monte Carlo for scaling in single transformation, translation and scaling in any two combined transformation and translation, rotation and scaling in all the three combined transformations. Hence for registration of brain images using all the three combined transformations - translation, rotation and scaling, Wang Landau Adaptive Monte Carlo can be used.
引用
收藏
页码:114 / 121
页数:8
相关论文
共 50 条
  • [41] Stepper registration analysis using Monte Carlo modeling
    Waldo, WG
    Selinidis, K
    Espenscheid, A
    [J]. 1997 IEEE/SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE AND WORKSHOP - ASMC 97 PROCEEDINGS: THEME - THE QUEST FOR SEMICONDUCTOR MANUFACTURING EXCELLENCE: LEADING THE CHARGE INTO THE 21ST CENTURY, 1997, : 305 - 308
  • [42] A Markov Chain Monte Carlo based Rigid Image Registration Method
    Karabulut, Navdar
    Erdil, Ertunc
    Cetin, Mujdat
    [J]. 2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [43] Image Registration via Stochastic Gradient Markov Chain Monte Carlo
    Grzech, Daniel
    Kainz, Bernhard
    Glocker, Ben
    Le Folgoc, Loic
    [J]. UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, UNSURE 2020, GRAIL 2020, 2020, 12443 : 3 - 12
  • [44] A MONTE-CARLO SIMULATION OF COMPLETE SYSTEMS FOR RADIOGRAPHIC IMAGE REGISTRATION
    AERTS, W
    DEMEESTER, PJ
    BOLLEN, R
    [J]. MATERIALS EVALUATION, 1982, 40 (10) : 1071 - 1075
  • [45] Determination of vapor-liquid equilibria using hybrid Monte Carlo Wang-Landau simulations in the isothermal-isobaric ensemble
    Alexandrov, Tsvetan
    Kastl, Erica A.
    Desgranges, Caroline
    Delhommelle, Jerome
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [46] Bayesian models for medical image biology using Monte Carlo Markov chains techniques
    Zimeras, S
    Gerogiakodis, F
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (7-8) : 759 - 768
  • [47] Image registration using wavelet techniques
    Stone, HS
    Le Moigne, J
    McGuire, M
    [J]. EXPLOITING NEW IMAGE SOURCES AND SENSORS, 26TH AIPR WORKSHOP, 1998, 3240 : 116 - 125
  • [48] Rare-Event Detection by Quasi-Wang–Landau Monte Carlo Sampling with Approximate Bayesian Computation
    Junseok Kwon
    [J]. Journal of Mathematical Imaging and Vision, 2019, 61 : 1258 - 1275
  • [49] Wang-Landau method for calculating Renyi entropies in finite-temperature quantum Monte Carlo simulations
    Inglis, Stephen
    Melko, Roger G.
    [J]. PHYSICAL REVIEW E, 2013, 87 (01):