Fractional diffusion-wave equations on finite interval by Laplace transform

被引:4
|
作者
Duan, Jun-Sheng [1 ,2 ]
Fu, Shou-Zhong [2 ]
Wang, Zhong [2 ]
机构
[1] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
[2] Zhaoqing Univ, Sch Math & Informat Sci, Zhaoqing 526061, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional calculus; Laplace transform; fractional diffusion-wave equation; 26A33; 44A10; 34A08; 35R11; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1080/10652469.2013.838759
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work the solution of the fractional diffusion-wave equation on the finite interval [0, 1] with inhomogeneous boundary conditions is considered by the Laplace transform and the contour integration method. For the fractional diffusion equation the solution is expressed as an infinite integral, and for the fractional wave equation the solution is expressed as a sum of an infinite integral and a series. Finally, we compare the results with that by the method of separation of variables.
引用
收藏
页码:220 / 229
页数:10
相关论文
共 50 条
  • [1] A Galerkin Finite Element Method to Solve Fractional Diffusion and Fractional Diffusion-Wave Equations
    Esen, Alaattin
    Ucar, Yusuf
    Yagmurlu, Nuri
    Tasbozan, Orkun
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (02) : 260 - 273
  • [2] Sumudu transform method for solving fractional differential equations and fractional Diffusion-Wave equation
    Darzi, Rahmat
    Mohammadzade, Bahar
    Mousavi, Sahar
    Beheshti, Rozita
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2013, 6 (01): : 79 - 84
  • [3] Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion-wave equations
    Jafari, H.
    Khalique, C. M.
    Nazari, M.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1799 - 1805
  • [4] SOLVING FRACTIONAL DIFFUSION AND FRACTIONAL DIFFUSION-WAVE EQUATIONS BY PETROV-GALERKIN FINITE ELEMENT METHOD
    Esen, A.
    Ucar, Y.
    Yagmurlu, M.
    Tasbozan, O.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (02): : 155 - 168
  • [5] Meshless analysis of fractional diffusion-wave equations by generalized finite difference method
    Qing, Lanyu
    Li, Xiaolin
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 157
  • [6] A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations
    J. Quintana-Murillo
    S. B. Yuste
    [J]. The European Physical Journal Special Topics, 2013, 222 : 1987 - 1998
  • [7] A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations
    Quintana-Murillo, J.
    Yuste, S. B.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08): : 1987 - 1998
  • [8] ON AN EXPLICIT DIFFERENCE METHOD FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS
    Quintana Murillo, Joaquin
    Bravo Yuste, Santos
    [J]. PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1031 - 1036
  • [9] Harmonic analysis of random fractional diffusion-wave equations
    Anh, VV
    Leonenko, NN
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (01) : 77 - 85
  • [10] Rectangular decomposition method for fractional diffusion-wave equations
    Odibat, Zaid M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (01) : 92 - 97