Rectangular decomposition method for fractional diffusion-wave equations

被引:12
|
作者
Odibat, Zaid M. [1 ]
机构
[1] Al Balqa Appl Univ, Prince Abdullah Bin Ghazi Fac Sci & IT, Salt, Jordan
关键词
rectangular decomposition method; fractional integral; caputo derivative; diffusion-wave equation;
D O I
10.1016/j.amc.2005.11.088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new modification of the Adomian decomposition method is effectively implemented for solving fractional diffusion-wave equations that will facilitate the calculations, where the fractional derivative is based on Caputo definition. The proposed algorithm gives an analytical solution in the form of a convergent series with easily computable components. Numerical examples are given to show the application of the present algorithm. The new modification introduces a promising tool for many partial differential equations. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:92 / 97
页数:6
相关论文
共 50 条
  • [1] Exact solutions for time-fractional diffusion-wave equations by decomposition method
    Ray, Santanu Saha
    [J]. PHYSICA SCRIPTA, 2007, 75 (01) : 53 - 61
  • [2] ON AN EXPLICIT DIFFERENCE METHOD FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS
    Quintana Murillo, Joaquin
    Bravo Yuste, Santos
    [J]. PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1031 - 1036
  • [3] Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion-wave equations
    Jafari, H.
    Khalique, C. M.
    Nazari, M.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1799 - 1805
  • [4] Numerical method for fractional diffusion-wave equations with functional delay
    Pimenov, V. G.
    Tashirova, E. E.
    [J]. IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2021, 57 : 156 - 169
  • [5] A Galerkin Finite Element Method to Solve Fractional Diffusion and Fractional Diffusion-Wave Equations
    Esen, Alaattin
    Ucar, Yusuf
    Yagmurlu, Nuri
    Tasbozan, Orkun
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (02) : 260 - 273
  • [6] An approximate solution for a fractional diffusion-wave equation using the decomposition method
    Al-Khaled, K
    Momani, S
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 165 (02) : 473 - 483
  • [7] A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations
    Esen, A.
    Tasbozan, O.
    Ucar, Y.
    Yagmurlu, N. M.
    [J]. TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02) : 181 - 193
  • [8] TWO-DIMENSIONAL FRACTIONAL EULER POLYNOMIALS METHOD FOR FRACTIONAL DIFFUSION-WAVE EQUATIONS
    Balachandar, S. Raja
    Venkatesh, S. G.
    Balasubramanian, K.
    Uma, D.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)
  • [9] Sumudu transform method for solving fractional differential equations and fractional Diffusion-Wave equation
    Darzi, Rahmat
    Mohammadzade, Bahar
    Mousavi, Sahar
    Beheshti, Rozita
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2013, 6 (01): : 79 - 84
  • [10] An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form
    Quintana Murillo, Joaquin
    Bravo Yuste, Santos
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (02):