Fractional diffusion-wave equations on finite interval by Laplace transform

被引:4
|
作者
Duan, Jun-Sheng [1 ,2 ]
Fu, Shou-Zhong [2 ]
Wang, Zhong [2 ]
机构
[1] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
[2] Zhaoqing Univ, Sch Math & Informat Sci, Zhaoqing 526061, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional calculus; Laplace transform; fractional diffusion-wave equation; 26A33; 44A10; 34A08; 35R11; BOUNDARY-VALUE-PROBLEMS;
D O I
10.1080/10652469.2013.838759
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work the solution of the fractional diffusion-wave equation on the finite interval [0, 1] with inhomogeneous boundary conditions is considered by the Laplace transform and the contour integration method. For the fractional diffusion equation the solution is expressed as an infinite integral, and for the fractional wave equation the solution is expressed as a sum of an infinite integral and a series. Finally, we compare the results with that by the method of separation of variables.
引用
收藏
页码:220 / 229
页数:10
相关论文
共 50 条
  • [11] Stability and asymptotics for fractional delay diffusion-wave equations
    Yao, Zichen
    Yang, Zhanwen
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 15208 - 15225
  • [12] Error estimates of a semidiscrete finite element method for fractional stochastic diffusion-wave equations
    Zou, Guang-an
    Atangana, Abdon
    Zhou, Yong
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1834 - 1848
  • [13] Finite Difference and Sinc-Collocation Approximations to a Class of Fractional Diffusion-Wave Equations
    Mao, Zhi
    Xiao, Aiguo
    Yu, Zuguo
    Shi, Long
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [14] On three explicit difference schemes for fractional diffusion and diffusion-wave equations
    Quintana Murillo, Joaquin
    Bravo Yuste, Santos
    [J]. PHYSICA SCRIPTA, 2009, T136
  • [15] Optimal Schwarz waveform relaxation for fractional diffusion-wave equations
    Califano, Giovanna
    Conte, Dajana
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 127 : 125 - 141
  • [16] SUBORDINATION PRINCIPLE FOR FRACTIONAL DIFFUSION-WAVE EQUATIONS OF SOBOLEV TYPE
    Ponce, Rodrigo
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (02) : 427 - 449
  • [17] Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation
    Jincheng Ren
    Xiaonian Long
    Shipeng Mao
    Jiwei Zhang
    [J]. Journal of Scientific Computing, 2017, 72 : 917 - 935
  • [18] Multidimensional solutions of time-fractional diffusion-wave equations
    Hanyga, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2020): : 933 - 957
  • [19] Numerical method for fractional diffusion-wave equations with functional delay
    Pimenov, V. G.
    Tashirova, E. E.
    [J]. IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2021, 57 : 156 - 169
  • [20] FRACTIONAL DIFFUSION-WAVE EQUATIONS: HIDDEN REGULARITY FOR WEAK SOLUTIONS
    Loreti, Paola
    Sforza, Daniela
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (04) : 1015 - 1034