An approximation method for solving systems of Volterra integro-differential equations

被引:23
|
作者
Berenguer, M. I. [1 ]
Garralda-Guillem, A. I. [1 ]
Ruiz Galan, M. [1 ]
机构
[1] Univ Granada, Dpto Matemat Aplicada, E-18071 Granada, Spain
关键词
Numerical approximation; Systems of Volterra integro-differential equations; Biorthogonal systems in Banach spaces; NUMERICAL-SOLUTION;
D O I
10.1016/j.apnum.2011.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The approximate method for solving a system of nonlinear Volterra integro-differential equations introduced in this paper, involves the use of biorthogonal systems in adequate spaces of continuous functions associated with such a system. That allows to calculate, in an approximate way, the solution of such a system only by linear combinations of evaluations of adequate points at the basic functions and integrals of these functions, that are piecewise univariate and bivariate polynomials of degree one and two, respectively. We obtain an explicit control for the error, implement the method and illustrate the results with some numerical examples. (C) 2011 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 135
页数:10
相关论文
共 50 条
  • [31] Solving Fractional Volterra-Fredholm Integro-Differential Equations via A** Iteration Method
    Ofem, Austine Efut
    Hussain, Aftab
    Joseph, Oboyi
    Udo, Mfon Okon
    Ishtiaq, Umar
    Al Sulami, Hamed
    Chikwe, Chukwuka Fernando
    [J]. AXIOMS, 2022, 11 (09)
  • [32] Fast and precise spectral method for solving pantograph type Volterra integro-differential equations
    Ezz-Eldien, S. S.
    Doha, E. H.
    [J]. NUMERICAL ALGORITHMS, 2019, 81 (01) : 57 - 77
  • [33] A fast method for solving second order boundary value Volterra integro-differential equations
    Shaw, RE
    Garey, LE
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1997, 65 (1-2) : 121 - 129
  • [34] An approximate method for solving a class of weakly-singular Volterra integro-differential equations
    Bougoffa, Lazhar
    Rach, Randolph C.
    Mennouni, Abdelaziz
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (22) : 8907 - 8913
  • [36] A New Operational Method for Solving Nonlinear Volterra Integro-differential Equations with Fractional Order
    Moghadam, M. Mohseni
    Saeedi, H.
    Mollahasani, N.
    [J]. JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2010, 2 (2-3): : 95 - 107
  • [37] The Volterra Theory of Integro-Differential Equations
    Soldatov A.
    Zaripov S.
    [J]. Journal of Mathematical Sciences, 2023, 277 (3) : 467 - 475
  • [38] The Application of the Hybrid Method to Solving the Volterra Integro-differential Equation
    Mehdiyeva, G.
    Imanova, M.
    Ibrahimov, V.
    [J]. WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL I, 2013, : 186 - 190
  • [39] INTEGRO-DIFFERENTIAL EQUATIONS OF VOLTERRA TYPE
    RAO, MR
    TSOKOS, CP
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 528 - &
  • [40] A Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations
    Rahimkhani, Parisa
    Ordokhani, Yadollah
    Babolian, Esmail
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2018, 13 (02): : 111 - 132