Solving Fractional Volterra-Fredholm Integro-Differential Equations via A** Iteration Method

被引:4
|
作者
Ofem, Austine Efut [1 ,2 ]
Hussain, Aftab [3 ]
Joseph, Oboyi [4 ]
Udo, Mfon Okon [5 ]
Ishtiaq, Umar [6 ]
Al Sulami, Hamed [3 ]
Chikwe, Chukwuka Fernando [4 ]
机构
[1] Univ Uyo, Dept Math, PM Box 1017, Uyo, Nigeria
[2] Univ KwaZulu Natal, Dept Math Stat & Comp Sci, ZA-4041 Durban, South Africa
[3] King Abdulaziz Univ, Dept Math, POB 80203, Jeddah, Saudi Arabia
[4] Univ Calabar, Dept Math, PM Box 1115, Calabar, Nigeria
[5] Akwa Ibom State Univ, Dept Math, PM Box 1167, Ikot Akpaden, Mkpat Enin, Nigeria
[6] Univ Management & Technol, Off Res Innovat & Commercializat, Lahore 54770, Pakistan
关键词
almost contraction mapping; weak and strong convergence; weak w(2)-stability; Fractional Volterra-Fredholm Integro-Differential Equations; APPROXIMATING FIXED-POINTS; ALPHA-NONEXPANSIVE MAPPINGS; CONVERGENCE; WEAK; STABILITY; THEOREMS;
D O I
10.3390/axioms11090470
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we develop a faster iteration method, called the A** iteration method, for approximating the fixed points of almost contraction mappings and generalized alpha-nonexpansive mappings. We establish some weak and strong convergence results of the A** iteration method for fixed points of generalized alpha-nonexpansive mappings in uniformly convex Banach spaces. We provide a numerical example to illustrate the efficiency of our new iteration method. The weak w2-stability result of the new iteration method is also studied. As an application of our main results, we approximate the solution of a fractional Volterra-Fredholm integro-differential equation. Our results improve and generalize several well-known results in the current literature.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Solving nonlinear Volterra-Fredholm integro-differential equations using He's variational iteration method
    Araghi, M. A. Fariborzi
    Behzadi, Sh. Sadigh
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (04) : 829 - 838
  • [2] A new method for the solution of Volterra-Fredholm integro-differential equations
    Jafarzadeh, Yousef
    Ezzati, Reza
    [J]. TBILISI MATHEMATICAL JOURNAL, 2019, 12 (02) : 59 - 66
  • [3] Spectral Collocation Algorithm for Solving Fractional Volterra-Fredholm Integro-Differential Equations via Generalized Fibonacci Polynomials
    Abo-Eldahab, E. M.
    Mohamed, A. S.
    Ali, S. M.
    [J]. CONTEMPORARY MATHEMATICS, 2022, 3 (03): : 308 - 325
  • [4] Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations
    Dawood, Lafta A.
    Hamoud, Ahmed A.
    Mohammed, Nedal M.
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (02): : 158 - 163
  • [5] A Numerical Method for Investigating Fractional Volterra-Fredholm Integro-Differential Model
    Syam, Muhammed I.
    Sharadga, Mwaffag
    Hashim, Ishak
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1429 - 1448
  • [6] On the Hilfer Fractional Volterra-Fredholm Integro Differential Equations
    Ivaz, Karim
    Alasadi, Ismael
    Hamoud, Ahmed
    [J]. IAENG International Journal of Applied Mathematics, 2022, 52 (02)
  • [7] On a New Class of Impulsive η-Hilfer Fractional Volterra-Fredholm Integro-Differential Equations
    Ismaael, F. M.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (04): : 691 - 704
  • [8] Existence and controllability results for neutral fractional Volterra-Fredholm integro-differential equations
    Gunasekar, Tharmalingam
    Raghavendran, Prabakaran
    Santra, Shyam Sundar
    Sajid, Mohammad
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 34 (04): : 361 - 380
  • [9] Existence and Uniqueness Results of Volterra-Fredholm Integro-Differential Equations via Caputo Fractional Derivative
    Ndiaye, Ameth
    Mansal, Fulgence
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [10] Uniqueness and Stability Results for Caputo Fractional Volterra-Fredholm Integro-Differential Equations
    Hamoud, Ahmed A.
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (03): : 313 - 325