On k-ordered Hamiltonian graphs

被引:0
|
作者
Kierstead, HA [1 ]
Sárközy, GN
Selkow, SM
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
[3] MSRI, Berkeley, CA USA
关键词
Hamiltonian graph; k-ordered;
D O I
10.1002/(SICI)1097-0118(199909)32:1<17::AID-JGT2>3.3.CO;2-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Hamiltonian graph G of order a is k-ordered, 2 less than or equal to k less than or equal to n, if for every sequence v(1), v(2),..., v(k), of k distinct vertices of G, there exists a Hamiltonian cycle that encounters vi, v(2),..., v(k) in this order. Define f(k, n) as the smallest integer m for which any graph on a vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if a is sufficiently large in terms of k. Let g(k, n) = [n/2] + [k/2] - 1. More precisely, we show that f(k, n) - g(k, n) if n greater than or equal to 11k - 3 Furthermore, we show that f(k, n) greater than or equal to g(k, n) for any n greater than or equal to 2k. Finally we show that f(k, n) > g(k, n) if 2k less than or equal to n less than or equal to 3k - 6. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [31] Solution to an open problem on 4-ordered Hamiltonian graphs
    Hsu, Lih-Hsing
    Tan, Jimmy J. M.
    Cheng, Eddie
    Liptak, Laszlo
    Lin, Cheng-Kuan
    Tsai, Ming
    DISCRETE MATHEMATICS, 2012, 312 (15) : 2356 - 2370
  • [32] K2-Hamiltonian graphs: II
    Goedgebeur, Jan
    Renders, Jarne
    Wiener, Gabor
    Zamfirescu, Carol T.
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 580 - 611
  • [33] A Note on k-Step Hamiltonian Graphs
    Abd Aziz, N. A.
    Rad, N. J.
    Kamarulhaili, H.
    Hasni, R.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 87 - 93
  • [34] Hamiltonian cycles in k-partite graphs
    DeBiasio, Louis
    Krueger, Robert A.
    Pritikin, Dan
    Thompson, Eli
    JOURNAL OF GRAPH THEORY, 2020, 94 (01) : 92 - 112
  • [35] The strongly k-edge Hamiltonian graphs
    Hung, CN
    Chen, CH
    PROCEEDINGS OF THE 7TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2003, : 534 - 537
  • [36] K2-Hamiltonian Graphs: II
    Goedgebeur, Jan
    Renders, Jarne
    Wiener, Gábor
    Zamfirescu, Carol T.
    arXiv, 2023,
  • [37] K2-HAMILTONIAN GRAPHS: I
    Zamfirescu, Carol T.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 1706 - 1728
  • [38] GREATLY K-CONNECTIVE ORIENTED GRAPHS AND HAMILTONIAN K-ARC GRAPHS
    BERMOND, JC
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (03): : 141 - &
  • [39] Sufficient spectral conditions for graphs being k-edge-Hamiltonian or k-Hamiltonian
    Li, Yongtao
    Peng, Yuejian
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (13): : 2093 - 2113
  • [40] Common fixed point theorems for generalized k-ordered contractions and B-contractions on noncommutative Banach spaces
    Qiaoling Xin
    Lining Jiang
    Fixed Point Theory and Applications, 2015