A Note on k-Step Hamiltonian Graphs

被引:0
|
作者
Abd Aziz, N. A. [1 ]
Rad, N. J. [2 ]
Kamarulhaili, H. [1 ]
Hasni, R. [3 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town, Malaysia
[2] Shahed Univ, Dept Math, Tehran, Iran
[3] Univ Malaysia Terengganu, Sch Informat & Appl Math, Kuala Terengganu, Terengganu, Malaysia
来源
关键词
Hamiltonian graph; k-Step Hamiltonian graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given integer k, a given graph G on n vertices is called k-step Hamiltonian (or just k-SH) if the vertices of G can be labeled as v(1), v(2), ..., v(n) such that d(v(i), v(i+1)) = k and d(v(i),v(i+1)) = k for each i = 1, 2, ..., n - 1. In this paper, we present a construction namely B-construction that produces a (k+i)-SH graph from any k-SH graph G for every positive integer i >= 1.
引用
收藏
页码:87 / 93
页数:7
相关论文
共 50 条
  • [1] On k-step Hamiltonian graphs
    Lau, G.-C. (geeclau@yahoo.com), 1600, Charles Babbage Research Centre (90):
  • [2] Some Properties of k-step Hamiltonian Graphs
    Abd Aziz, Noor A'lawiah
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    Hasni, Roslan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [3] Bounds for the Independence Number in k-Step Hamiltonian Graphs
    Abd Aziz, Noor A'lawiah
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    Hasni, Roslan
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2018, 26 (01) : 15 - 28
  • [4] On chromatic number and clique number in k-step Hamiltonian graphs
    Aziz, Noor A'lawiah Abd
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    Hasni, Roslan
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (01) : 37 - 49
  • [5] On k-Step Fibonacci Functions and k-Step Fibonacci Numbers
    Sriponpaew, Boonyong
    Sassanapitax, Lee
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04): : 1123 - 1128
  • [6] k-step betweenness centrality
    Melda Kevser Akgün
    Mustafa Kemal Tural
    Computational and Mathematical Organization Theory, 2020, 26 : 55 - 87
  • [7] k-step betweenness centrality
    Akgun, Melda Kevser
    Tural, Mustafa Kemal
    COMPUTATIONAL AND MATHEMATICAL ORGANIZATION THEORY, 2020, 26 (01) : 55 - 87
  • [8] ON CYCLIC K-STEP ITERATIVE METHODS
    HANKE, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (04): : T188 - T190
  • [9] k-step nilpotent Lie algebras
    Goze, Michel
    Remm, Elisabeth
    GEORGIAN MATHEMATICAL JOURNAL, 2015, 22 (02) : 219 - 234
  • [10] k-step stage life testing
    Laumen, Benjamin
    Cramer, Erhard
    STATISTICA NEERLANDICA, 2021, 75 (02) : 203 - 233