EXISTENCE AND CONCENTRATION OF SOLUTIONS FOR A p-LAPLACE EQUATION WITH POTENTIALS IN RN

被引:0
|
作者
Wu, Mingzhu [1 ]
Yang, Zuodong [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Coll Zhongbei, Nanjing 210046, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Potentials; critical point theory; concentration; existence; concentration-compactness; p-Laplace;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the p-Laplace equation with Potentials -div(vertical bar del u vertical bar(p-2)del u) + lambda V (x)vertical bar u vertical bar(p-2)u = vertical bar u vertical bar(q-2)u, u is an element of W-1,W-p (R-N), x is an element of R-N where 2 <= p, p < q < p*. Using a concentration-compactness principle from critical point theory, we obtain existence, multiplicity solutions, and concentration of solutions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Concave power solutions of the dominative p-Laplace equation
    Fredrik Arbo Høeg
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [32] Stationary Solutions and Connecting Orbits for p-Laplace Equation
    Cwiszewski, Aleksander
    Maciejewski, Mateusz
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (01) : 309 - 329
  • [33] BLOW-UP OF SOLUTIONS TO A p-LAPLACE EQUATION
    Gorb, Yuliya
    Novikov, Alexei
    [J]. MULTISCALE MODELING & SIMULATION, 2012, 10 (03): : 727 - 743
  • [34] Viscosity solutions of the p-Laplace equation with nonlinear source
    Alkis S. Tersenov
    Aris S. Tersenov
    [J]. Archiv der Mathematik, 2007, 88 : 259 - 268
  • [35] Regularity of solutions of the parabolic normalized p-Laplace equation
    Hoeg, Fredrik Arbo
    Lindqvist, Peter
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 7 - 15
  • [36] Stationary Solutions and Connecting Orbits for p-Laplace Equation
    Aleksander Ćwiszewski
    Mateusz Maciejewski
    [J]. Journal of Dynamics and Differential Equations, 2018, 30 : 309 - 329
  • [38] BOUNDARY BEHAVIOR OF SOLUTIONS TO THE PARABOLIC p-LAPLACE EQUATION
    Avelin, Benny
    Kuusi, Tuomo
    Nystrom, Kaj
    [J]. ANALYSIS & PDE, 2019, 12 (01): : 1 - 42
  • [39] Concave power solutions of the dominative p-Laplace equation
    Hoeg, Fredrik Arbo
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (02):
  • [40] On the absence of global solutions of the radial p-Laplace equation
    Kon'kov, A. A.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2008, 63 (01) : 161 - 162