Stationary Solutions and Connecting Orbits for p-Laplace Equation

被引:3
|
作者
Cwiszewski, Aleksander [1 ]
Maciejewski, Mateusz [1 ]
机构
[1] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
关键词
POSITIVE SOLUTIONS;
D O I
10.1007/s10884-017-9573-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with one dimensional p-Laplace equation of the form u(t) = (vertical bar u(x)vertical bar(p-2)u(x))(x) + f(x, u), x is an element of(0,l), t > 0, under Dirichlet boundary condition, where and is a continuous function with . We will prove that if there is at least one eigenvalue of the p-Laplace operator between and , then there exists a nontrivial stationary solution. Moreover we show the existence of a connecting orbit between stationary solutions. The results are based on Conley index and detect stationary states even when those based on fixed point theory do not apply. In order to compute the Conley index for nonlinear semiflows deformation along p is used.
引用
收藏
页码:309 / 329
页数:21
相关论文
共 50 条
  • [1] Stationary Solutions and Connecting Orbits for p-Laplace Equation
    Aleksander Ćwiszewski
    Mateusz Maciejewski
    [J]. Journal of Dynamics and Differential Equations, 2018, 30 : 309 - 329
  • [2] SINGULAR SOLUTIONS OF THE P-LAPLACE EQUATION
    KICHENASSAMY, S
    VERON, L
    [J]. MATHEMATISCHE ANNALEN, 1986, 275 (04) : 599 - 615
  • [3] Positive solutions for the singular p-laplace equation
    Agarwal, RP
    Lu, HS
    O'Regan, D
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (04): : 1207 - 1220
  • [4] On global solutions of the radial p-Laplace equation
    Kon'kov, Andrej A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) : 3437 - 3451
  • [5] Concave power solutions of the dominative p-Laplace equation
    Fredrik Arbo Høeg
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [6] Viscosity solutions of the p-Laplace equation with nonlinear source
    Tersenov, Alkis S.
    Tersenov, Aris S.
    [J]. ARCHIV DER MATHEMATIK, 2007, 88 (03) : 259 - 268
  • [7] BLOW-UP OF SOLUTIONS TO A p-LAPLACE EQUATION
    Gorb, Yuliya
    Novikov, Alexei
    [J]. MULTISCALE MODELING & SIMULATION, 2012, 10 (03): : 727 - 743
  • [8] Viscosity solutions of the p-Laplace equation with nonlinear source
    Alkis S. Tersenov
    Aris S. Tersenov
    [J]. Archiv der Mathematik, 2007, 88 : 259 - 268
  • [9] BOUNDARY BEHAVIOR OF SOLUTIONS TO THE PARABOLIC p-LAPLACE EQUATION
    Avelin, Benny
    Kuusi, Tuomo
    Nystrom, Kaj
    [J]. ANALYSIS & PDE, 2019, 12 (01): : 1 - 42