Degree Sum Conditions for Cyclability in Bipartite Graphs

被引:0
|
作者
Okamura, Haruko [1 ]
Yamashita, Tomoki [1 ]
机构
[1] Kinki Univ, Dept Math, Higashiosaka, Osaka 5778502, Japan
关键词
Cycle; Cyclability; Bipartite graph; Degree sum; LONG CYCLES;
D O I
10.1007/s00373-012-1148-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We denote by G[X, Y] a bipartite graph G with partite sets X and Y. Let d (G) (v) be the degree of a vertex v in a graph G. For G[X, Y] and we define . Amar et al. (Opusc. Math. 29:345-364, 2009) obtained sigma (1,1)(S) condition for cyclability of balanced bipartite graphs. In this paper, we generalize the result as it includes the case of unbalanced bipartite graphs: if G[X, Y] is a 2-connected bipartite graph with |X| a parts per thousand yen |Y| and such that sigma (1,1)(S) a parts per thousand yen |X| + 1, then either there exists a cycle containing S or and there exists a cycle containing Y. This degree sum condition is sharp.
引用
收藏
页码:1077 / 1085
页数:9
相关论文
共 50 条
  • [41] On the sum of the squares of all distances in bipartite graphs
    Zhao, Hongjin
    Geng, Xianya
    ARS COMBINATORIA, 2018, 136 : 45 - 55
  • [42] Vertex-Distinguishing Edge Colorings of Graphs with Degree Sum Conditions
    Liu, Bin
    Liu, Guizhen
    GRAPHS AND COMBINATORICS, 2010, 26 (06) : 781 - 791
  • [43] Degree Sum Conditions for Traceable Quasi-Claw-Free Graphs
    Shuaijun CHEN
    Xiaodong CHEN
    Mingchu LI
    Journal of Mathematical Research with Applications, 2022, 42 (02) : 129 - 132
  • [44] Vertex-Distinguishing Edge Colorings of Graphs with Degree Sum Conditions
    Bin Liu
    Guizhen Liu
    Graphs and Combinatorics, 2010, 26 : 781 - 791
  • [45] Tenacity and Rupture Degree of Permutation Graphs of Complete Bipartite Graphs
    Li, Fengwei
    Ye, Qingfang
    Li, Xueliang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (03) : 423 - 434
  • [46] On the sum of the k largest eigenvalues of graphs and maximal energy of bipartite graphs
    Das, Kinkar Chandra
    Mojallal, Seyed Ahmad
    Sun, Shaowei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 : 175 - 194
  • [47] Local degree condition for hamiltonian bipartite graphs
    Lou, Dingjun
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 1995, 34 (02):
  • [48] Bipartite subgraphs of graphs with maximum degree three
    Bylka, SA
    Idzik, A
    Komar, J
    GRAPHS AND COMBINATORICS, 1999, 15 (02) : 129 - 136
  • [49] An implicit degree condition for cyclability of 2-heavy graphs
    Huang, Xing
    ARS COMBINATORIA, 2019, 146 : 135 - 141
  • [50] SIGNED DEGREE SEQUENCES IN SIGNED BIPARTITE GRAPHS
    Pirzada, S.
    Naikoo, T. A.
    Dar, F. A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (03) : 301 - 312