Degree Sum Conditions for Cyclability in Bipartite Graphs

被引:0
|
作者
Okamura, Haruko [1 ]
Yamashita, Tomoki [1 ]
机构
[1] Kinki Univ, Dept Math, Higashiosaka, Osaka 5778502, Japan
关键词
Cycle; Cyclability; Bipartite graph; Degree sum; LONG CYCLES;
D O I
10.1007/s00373-012-1148-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We denote by G[X, Y] a bipartite graph G with partite sets X and Y. Let d (G) (v) be the degree of a vertex v in a graph G. For G[X, Y] and we define . Amar et al. (Opusc. Math. 29:345-364, 2009) obtained sigma (1,1)(S) condition for cyclability of balanced bipartite graphs. In this paper, we generalize the result as it includes the case of unbalanced bipartite graphs: if G[X, Y] is a 2-connected bipartite graph with |X| a parts per thousand yen |Y| and such that sigma (1,1)(S) a parts per thousand yen |X| + 1, then either there exists a cycle containing S or and there exists a cycle containing Y. This degree sum condition is sharp.
引用
收藏
页码:1077 / 1085
页数:9
相关论文
共 50 条
  • [31] Degree sum conditions for the circumference of 4-connected graphs
    Chiba, Shuya
    Tsugaki, Masao
    Yamashita, Tomoki
    DISCRETE MATHEMATICS, 2014, 333 : 66 - 83
  • [32] Degree sum conditions for path-factor uniform graphs
    Dai, Guowei
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04): : 1409 - 1415
  • [33] Degree Sum Conditions for Hamiltonicity on k-Partite Graphs
    Guantao Chen
    Michael S. Jacobson
    Graphs and Combinatorics, 1997, 13 : 325 - 343
  • [34] The sum number and integral sum number of complete bipartite graphs
    Wang, Y
    Liu, BL
    DISCRETE MATHEMATICS, 2001, 239 (1-3) : 69 - 82
  • [35] Bipartite Graphs with the Maximum Sum of Squares of Degrees
    Zhang, Sheng-gui
    Zhou, Chun-cao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03): : 801 - 806
  • [36] Bipartite Graphs with the Maximum Sum of Squares of Degrees
    Shenggui ZHANG
    Chuncao ZHOU
    Acta Mathematicae Applicatae Sinica(English Series), 2014, 30 (03) : 801 - 806
  • [37] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Zhou, Bo
    Ilic, Aleksandar
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (04) : 1161 - 1169
  • [38] Bipartite graphs with the maximum sum of squares of degrees
    Sheng-gui Zhang
    Chun-cao Zhou
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 801 - 806
  • [39] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Bo Zhou
    Aleksandar Ilić
    Czechoslovak Mathematical Journal, 2010, 60 : 1161 - 1169
  • [40] Bipartite Graphs with the Maximum Sum of Squares of Degrees
    Sheng-gui ZHANG
    Chun-cao ZHOU
    Acta Mathematicae Applicatae Sinica, 2014, (03) : 801 - 806